R语言实现线性回归的示例

 更新时间:2021年03月11日 11:54:07   作者:菜鸟教程  
这篇文章主要介绍了R语言实现线性回归的示例,帮助大家更好的理解和学习使用R语言,感兴趣的朋友可以了解下

在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。

简单对来说就是用来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

一元线性回归分析法的数学方程:

y = ax + b
  • y 是因变量的值。
  • x 是自变量的值。
  • a 与 b 为一元线性回归方程的参数。

接下来我们可以创建一个人体身高与体重的预测模型:

1、收集样本数据:身高与体重。
2、使用 lm() 函数来创建一个关系模型。
3、从创建的模型中找到系数,并创建数学方程式。
4、获取关系模型的概要,了解平均误差即残差(估计值与真实值之差)。
5、使用 predict() 函数来预测人的体重。

准备数据

以下是人的身高与体重数据:

# 身高,单位 cm
151, 174, 138, 186, 128, 136, 179, 163, 152, 131

# 体重,单位 kg
63, 81, 56, 91, 47, 57, 76, 72, 62, 48

lm() 函数

在 R 中,你可以通过函数 lm() 进行线性回归。

lm() 函数用于创建自变量与因变量之间的关系模型。

lm() 函数语法格式如下:

lm(formula,data)

参数说明:

  • formula - 一个符号公式,表示 x 和 y 之间的关系。
  • data - 应用数据。

创建关系模型,并获取系数:

# 样本数据
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 提交给 lm() 函数
relation <- lm(y~x)

print(relation)

执行以上代码输出结果为:

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)      x 
  -38.4551    0.6746 

使用 summary() 函数获取关系模型的概要:

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 提交给 lm() 函数
relation <- lm(y~x)

print(summary(relation))

执行以上代码输出结果为:

Call:
lm(formula = y ~ x)

Residuals:
  Min   1Q   Median   3Q   Max 
-6.3002  -1.6629 0.0412  1.8944 3.9775 

Coefficients:
       Estimate Std. Error t value Pr(>|t|)  
(Intercept) -38.45509  8.04901 -4.778 0.00139 ** 
x       0.67461  0.05191 12.997 1.16e-06 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548,  Adjusted R-squared: 0.9491 
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06

predict() 函数

predict() 函数用于根据我们建立的模型来预测数值。

predict() 函数语法格式如下:

predict(object, newdata)

参数说明:

  • object - lm() 函数创建的公式。
  • newdata - 要预测的值。

以下实例我们预测一个新的体重值:

# 样本数据
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

# 提交给 lm() 函数
relation <- lm(y~x)

# 判断身高为 170cm 的体重
a <- data.frame(x = 170)
result <-  predict(relation,a)
print(result)

执行以上代码输出结果为:

1 
76.22869 

我们也可以生存一个图表:

# 样本数据
x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)
relation <- lm(y~x)

# 生存 png 图片
png(file = "linearregression.png")

# 生成图表
plot(y,x,col = "blue",main = "Height & Weight Regression",
abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in cm")

图表如下:

以上就是R语言实现线性回归的示例的详细内容,更多关于R语言 线性回归的资料请关注脚本之家其它相关文章!

相关文章

  • 如何用R语言绘制散点图

    如何用R语言绘制散点图

    这篇文章主要介绍了如何用R语言绘制散点图,帮助大家更好的理解和学习使用R语言,感兴趣的朋友可以了解下
    2021-03-03
  • R语言差异检验:非参数检验操作

    R语言差异检验:非参数检验操作

    这篇文章主要介绍了R语言差异检验:非参数检验操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言基本对象类型知识点详解

    R语言基本对象类型知识点详解

    在本篇文章里小编给大家整理了一篇关于R语言基本对象类型知识点详解内容,有兴趣的朋友们学习下。
    2021-03-03
  • R语言“循环”知识点详解

    R语言“循环”知识点详解

    在本篇文章里小编给大家整理的是一篇关于R语言循环的相关知识点及用法总结,有需要的朋友们可以跟着学习下。
    2021-03-03
  • R语言作图之直方图histogram绘制过程详解

    R语言作图之直方图histogram绘制过程详解

    这篇文章主要介绍了R语言作图之直方图histogram详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • R语言正态分布的实现示例

    R语言正态分布的实现示例

    R语言中正态分布包括四个主要函数:rnorm、dnorm、pnorm、qnorm,分别用于生成随机数、计算概率密度、累积概率和计算分位数,本文就来详细的介绍一下具体用法,感兴趣的可以了解一下
    2024-10-10
  • R语言利用barplot()制作条形图的各种实例

    R语言利用barplot()制作条形图的各种实例

    这篇文章主要给大家介绍了关于R语言利用barplot()制作条形图的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • R语言符号知识点汇总

    R语言符号知识点汇总

    在本篇文章里小编给大家整理的是一篇关于R语言符号知识点汇总内容,有需要的朋友们可以学习下。
    2021-03-03
  • R语言中逻辑回归知识点总结

    R语言中逻辑回归知识点总结

    在本篇文章里小编给大家总结了关于R语言中逻辑回归知识点相关内容,有需要的朋友们跟着学习下。
    2021-05-05
  • R语言 实现list类型数据转换

    R语言 实现list类型数据转换

    这篇文章主要介绍了R语言 实现list类型数据转换,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03

最新评论