R语言数据类型深入详解

 更新时间:2021年03月15日 15:46:23   作者:Zhao-Pace  
这篇文章主要介绍了R语言数据类型深入详解,内容对于数据类型讲解的很详细,有对于R语言感兴趣的同学可以多学习下

R语言用来存储数据的对象包括: 向量, 因子, 数组, 矩阵, 数据框, 时间序列(ts)以及列表

意义介绍

1. 向量(一维数据): 只能存放同一类型的数据

语法: c(data1, data2, ...),访问的时候下标从1开始(和Matlab相同);向量里面只能存放相同类型的数据.

> x <- c(1,5,8,9,1,2,5)
> x
[1] 1 5 8 9 1 2 5
> y <- c(1,"zhao") # 这里面有integer和字符串, 整数自动转化成了字符
> y[1] 
[1] "1"

访问:

> x[-(1:2)]  # 不显示第1,2个元素
[1] 8 9 1 2 5
> x[2:4]    # 访问第2,3,4个元素
[1] 5 8 9

2. 因子(factors): 提供了一个处理分类数据的更简洁的方式

因子在整个计算过程中不再作为数值, 而是作为一个"符号"而已.

factor(x=character(), levels, labels=levels, exclude=NA, ordered=is.ordered(x), nmax=NA)

x: 一个数据向量, 它将被转换成为因子;

levels: 用来指定因子可能出现的水平(默认也就是向量x里面互异的值, sort(unique(x)));它是一个字符向量(即每个元素是单个字符, 组成的一个向量), 下面的变量b就是一个字符向量(可以使用as.character()函数来生成).

labels: 用来指定水平的名字;

> a <- c(6,1,3,0)
> b = as.character(a)
> b
[1] "6" "1" "3" "0"

exclude: 一个值向量, 表示从向量x里面剔除的水平值.

nmax: 水平数目的上界.

> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:6)
[1] 1 2 3
Levels: 1 2 3 4 5 6
> factor(1:6, exclude = 2)
[1] 1  <NA> 3  4  5  6  
Levels: 1 3 4 5 6

一般因子(factor) VS 有序因子(ordered factor)

因子用来存放变量或者有序变量, 这类变量不能用来计算, 而只能用来分类或者计数. 一般因子表示分类变量, 有序因子用来表示有序变量.

创建一个因子:

> colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')
> col <- factor(colour) #生成因子
#labels里面的内容代替对应位置处的levels内容
> col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow'))
> levels(col)
[1] "G" "R" "Y"
> levels(col1)
[1] "Green" "Red"  "Yellow"
> col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))
> levels(col2)
[1] "1" "2" "3"
> col_vec <- as.vector(col2)
> class(col_vec)
[1] "character"
> col2
[1] 1 1 2 3 1 3 3 2 3
Levels: 1 2 3
> col_num <- as.numeric(col2)
> col_num
[1] 1 1 2 3 1 3 3 2 3
> col3 <- factor(colour, levels = c('G', 'R')) #levels里面没有'B',导致col3里面的'B'变成了<NA>
> col3
[1] G  G  R  <NA> G  <NA> <NA> R  <NA>
Levels: G R
> colour
[1] "G" "G" "R" "Y" "G" "Y" "Y" "R" "Y"

创建一个有序因子:

> score <- c('A', 'B', 'A', 'C', 'B')
> score1 <- ordered(score, levels = c('C', 'B', 'A'));
> score1
[1] A B A C B
Levels: C < B < A

3. 矩阵(matrix, 二维数据): 只能存放同一类型

语法: matrix(data, nrow = , ncol = , byrow = F) -- byrow = F表示按列来存放数据(默认), byrow=T表示按行存放数据;

> xx = matrix(1:10, 2, 5)
> xx
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  3  5  7  9
[2,]  2  4  6  8  10

4. 数组(大于等于三维的数据): 只能存放同一类型

语法: array(data, dim) -- data: 必须是同一类型的数据; dim: 各维的维度组成的向量;(怎么感觉和matlab里面的reshape函数那么像)

> a = array(1:10,c(2,5))
> a
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  3  5  7  9
[2,]  2  4  6  8  10

5. 数据框(data frame)

数据框是一种矩阵形式排列的数据(类似于excel表格), 但是和矩阵不同的是, 它的每一列可以是不同的数据类型(还是和excel很像).

语法: data.frame(data1, data2,...) -- data1,...为每列的数据.

> name <- c("Mr A", "Mr B", "Mr C")
> group <- rep(1,3)
> scort <- c(58,15,41)
> df <- data.frame(name, group, scort)
> df
 name group scort
1 Mr A   1  58
2 Mr B   1  15
3 Mr C   1  41

数据访问:

> df$name
[1] Mr A Mr B Mr C
Levels: Mr A Mr B Mr C
 > df[1]
  name
 1 Mr A
 2 Mr B
 3 Mr C

6. 列表(list): 可以存放不同类型的数据

语法: list(name1=component1, name2=component2, ...)

> xx <- rep(1:2, 3:4)
> yy <- c('Mr A', 'Mr B', 'Mr C', 'Mr D', 'Mr E', 'Mr D', 'Mr F')
> zz <- 'discussion group'
> name.list <- list(group = xx, name = yy, decription = zz)  
> name.list
$group
[1] 1 1 1 2 2 2 2

$name
[1] "Mr A" "Mr B" "Mr C" "Mr D" "Mr E" "Mr D" "Mr F"

$decription
[1] "discussion group"

参考:

blog.sina.com.cn/s/blog_4d9814240102vigp.html

到此这篇关于R语言数据类型深入详解的文章就介绍到这了,更多相关R语言数据类型内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • R语言学习笔记之plot函数

    R语言学习笔记之plot函数

    plot()函数是R中最基本的绘图函数,其实最简单、最基础的函数,这也就意味着其具有更多的可操作性,下面这篇文章主要给大家介绍了关于R语言学习笔记之plot函数的相关资料,需要的朋友可以参考下
    2022-10-10
  • R studio 批量注释的快捷方式

    R studio 批量注释的快捷方式

    这篇文章主要介绍了R studio 批量注释的快捷方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言常用两种并行方法之snowfall详解

    R语言常用两种并行方法之snowfall详解

    这篇文章主要为大家介绍了R语言常用两种并行方法之snowfall详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2021-11-11
  • R语言matrix生成矩阵的方法

    R语言matrix生成矩阵的方法

    这篇文章主要介绍了R语言matrix生成矩阵的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • R语言中corrplot标题居中及eps格式输出

    R语言中corrplot标题居中及eps格式输出

    由于论文的需要,很多R语言绘图需要eps格式矢量图的方式进行输出,同时最近也需要绘制相关性图,因此决定写个博客作为记录,有需要的朋友可以借鉴参考下
    2021-11-11
  • R语言绘制维恩图ggvenn示例详解

    R语言绘制维恩图ggvenn示例详解

    这篇文章主要为大家介绍了R语言绘制维恩图ggvenn示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • R语言关于二项分布知识点总结

    R语言关于二项分布知识点总结

    在本篇内容里小编给大家整理的是一篇关于R语言关于二项分布知识点总结内容,有兴趣的朋友们可以学习下。
    2021-05-05
  • 利用R语言绘制时间序列图的操作

    利用R语言绘制时间序列图的操作

    这篇文章主要介绍了利用R语言绘制时间序列图的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • R语言中ggplot2绘制双坐标轴图

    R语言中ggplot2绘制双坐标轴图

    本文主要介绍了R语言中ggplot2绘制双坐标轴图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • R语言绘制小提琴图violin plot实现示例

    R语言绘制小提琴图violin plot实现示例

    这篇文章主要为大家介绍了R语言绘制小提琴图violin plot的实现方法示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2022-02-02

最新评论