R语言逻辑回归深入讲解

 更新时间:2021年03月17日 15:42:57   作者:瑶池里  
这篇文章主要介绍了R语言逻辑回归深入讲解,文中对于逻辑回归讲解的很细致,有感兴趣的同学可以研究下

逻辑回归

> ###############逻辑回归
> setwd("/Users/yaozhilin/Downloads/R_edu/data")
> accepts<-read.csv("accepts.csv")
> names(accepts)
 [1] "application_id" "account_number" "bad_ind"    "vehicle_year"  "vehicle_make" 
 [6] "bankruptcy_ind" "tot_derog"   "tot_tr"     "age_oldest_tr" "tot_open_tr"  
[11] "tot_rev_tr"   "tot_rev_debt"  "tot_rev_line"  "rev_util"    "fico_score"  
[16] "purch_price"  "msrp"      "down_pyt"    "loan_term"   "loan_amt"   
[21] "ltv"      "tot_income"   "veh_mileage"  "used_ind"   
> accepts<-accepts[complete.cases(accepts),]
> select<-sample(1:nrow(accepts),length(accepts$application_id)*0.7)
> train<-accepts[select,]###70%用于建模
> test<-accepts[-select,]###30%用于检测
> attach(train)
> ###用glm(y~x,family=binomial(link="logit"))
> gl<-glm(bad_ind~fico_score,family=binomial(link = "logit"))
> summary(gl)

Call:
glm(formula = bad_ind ~ fico_score, family = binomial(link = "logit"))

Deviance Residuals: 
  Min    1Q  Median    3Q   Max 
-2.0794 -0.6790 -0.4937 -0.3073  2.6028 

Coefficients:
       Estimate Std. Error z value Pr(>|z|)  
(Intercept) 9.049667  0.629120  14.38  <2e-16 ***
fico_score -0.015407  0.000938 -16.43  <2e-16 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

(Dispersion parameter for binomial family taken to be 1)

  Null deviance: 2989.2 on 3046 degrees of freedom
Residual deviance: 2665.9 on 3045 degrees of freedom
AIC: 2669.9

Number of Fisher Scoring iterations: 5

多元逻辑回归

> ###多元逻辑回归
> gls<-glm(bad_ind~fico_score+bankruptcy_ind+age_oldest_tr+
+      tot_derog+rev_util+veh_mileage,family = binomial(link = "logit"))
> summary(gls)

Call:
glm(formula = bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + 
  tot_derog + rev_util + veh_mileage, family = binomial(link = "logit"))

Deviance Residuals: 
  Min    1Q  Median    3Q   Max 
-2.2646 -0.6743 -0.4647 -0.2630  2.8177 

Coefficients:
         Estimate Std. Error z value Pr(>|z|)  
(Intercept)   8.205e+00 7.433e-01 11.039 < 2e-16 ***
fico_score   -1.338e-02 1.092e-03 -12.260 < 2e-16 ***
bankruptcy_indY -3.771e-01 1.855e-01 -2.033  0.0421 * 
age_oldest_tr  -4.458e-03 6.375e-04 -6.994 2.68e-12 ***
tot_derog    3.012e-02 1.552e-02  1.941  0.0523 . 
rev_util     3.763e-04 5.252e-04  0.717  0.4737  
veh_mileage   2.466e-06 1.381e-06  1.786  0.0741 . 
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

(Dispersion parameter for binomial family taken to be 1)

  Null deviance: 2989.2 on 3046 degrees of freedom
Residual deviance: 2601.4 on 3040 degrees of freedom
AIC: 2615.4

Number of Fisher Scoring iterations: 5

> glss<-step(gls,direction = "both")
Start: AIC=2615.35
bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog + 
  rev_util + veh_mileage

         Df Deviance  AIC
- rev_util    1  2601.9 2613.9
<none>        2601.3 2615.3
- veh_mileage   1  2604.4 2616.4
- tot_derog    1  2605.1 2617.1
- bankruptcy_ind 1  2605.7 2617.7
- age_oldest_tr  1  2655.9 2667.9
- fico_score   1  2763.8 2775.8

Step: AIC=2613.88
bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog + 
  veh_mileage

         Df Deviance  AIC
<none>        2601.9 2613.9
- veh_mileage   1  2604.9 2614.9
+ rev_util    1  2601.3 2615.3
- tot_derog    1  2605.7 2615.7
- bankruptcy_ind 1  2606.1 2616.1
- age_oldest_tr  1  2656.9 2666.9
- fico_score   1  2773.2 2783.2
> #出来的数据是logit,我们需要转换
> train$pre<-predict(glss,train)
> #出来的数据是logit,我们需要转换
> train$pre<-predict(glss,train)
> summary(train$pre)
  Min. 1st Qu. Median  Mean 3rd Qu.  Max. 
 -4.868 -2.421 -1.671 -1.713 -1.011  2.497 
> train$pre_p<-1/(1+exp(-1*train$pre))
> summary(train$pre_p)
  Min. 1st Qu. Median  Mean 3rd Qu.  Max. 
0.00763 0.08157 0.15823 0.19298 0.26677 0.92395
 #逻辑回归不需要检测扰动项,但需要检测共线性
 > library(car)
 > vif(glss)
 > fico_score bankruptcy_ind age_oldest_tr   tot_derog  veh_mileage 
 >1.271283    1.144846    1.075603    1.423850    1.003616 

到此这篇关于R语言逻辑回归深入讲解的文章就介绍到这了,更多相关R语言逻辑回归内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • R语言中Fisher判别的使用方法

    R语言中Fisher判别的使用方法

    这篇文章主要介绍了R语言中Fisher判别的使用方法,文中
    2021-03-03
  • R语言列筛选的方法select实例详解

    R语言列筛选的方法select实例详解

    对于大数据,linux和python是很好的处理工具,但是对于这两个语言不熟悉的盆友来说,R语言是非常好的替代工具,下面这篇文章主要给大家介绍了关于R语言列筛选的法select的相关资料,需要的朋友可以参考下
    2022-07-07
  • R语言 数据表匹配和拼接 merge函数的使用

    R语言 数据表匹配和拼接 merge函数的使用

    这篇文章主要介绍了R语言 数据表匹配和拼接 merge函数的使用说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • R语言学习之字符串和时间格式化详解

    R语言学习之字符串和时间格式化详解

    这篇文章主要为大家详细介绍了R语言中字符串和时间格式化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-03-03
  • 如何改变R语言默认存储包的路径

    如何改变R语言默认存储包的路径

    这篇文章主要介绍了改变R语言默认存储包的路径操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • R语言数据可视化ggplot绘制置信区间与分组绘图技巧

    R语言数据可视化ggplot绘制置信区间与分组绘图技巧

    这篇文章主要为大家介绍了R语言数据可视化ggplot绘制置信区间与分组绘图的技巧,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2021-11-11
  • R语言控制结构知识点总结

    R语言控制结构知识点总结

    在本篇文章里小编给大家整理一篇关于R语言控制结构知识点总结内容,有兴趣的朋友们可以学习参考下。
    2021-03-03
  • R语言学习ggplot2绘制统计图形包全面详解

    R语言学习ggplot2绘制统计图形包全面详解

    这篇文章主要为大家详细介绍了R语言学习ggplot2绘制统计图形包的全面知识讲解,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2021-11-11
  • R语言服务器安装R包实现过程

    R语言服务器安装R包实现过程

    这篇文章主要为大家介绍了R语言在服务器安装R包的实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2021-11-11
  • 利用R语言合并数据框的行与列实例代码

    利用R语言合并数据框的行与列实例代码

    实际操作中我们经常需要引入其他表中的列,即将其他表中列加入到表中,需要把两个或者更多的表合并成一个,下面这篇文章主要给大家介绍了关于利用R语言合并数据框的行与列的相关资料,需要的朋友可以参考下
    2022-07-07

最新评论