numpy和tensorflow中的各种乘法(点乘和矩阵乘)
点乘和矩阵乘的区别:
1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法
若 w 为 m*1 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵。
若 w 为 m*n 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵。
w的列数只能为 1 或 与x的列数相等(即n),w的行数与x的行数相等 才能进行乘法运算。
2)矩阵乘 ---- 按照矩阵乘法规则做运算
若 w 为 m*p 的矩阵,x 为 p*n 的矩阵,那么通过矩阵相乘结果就会得到一个 m*n 的矩阵。
只有 w 的列数 == x的行数 时,才能进行乘法运算
1. numpy
1)点乘
import numpy as np w = np.array([[0.4], [1.2]]) x = np.array([range(1,6), range(5,10)]) print w print x print w*x
运行结果如下图:
2)矩阵乘
import numpy as np w = np.array([[0.4, 1.2]]) x = np.array([range(1,6), range(5,10)]) print w print x print np.dot(w,x)
运行结果如下:
2. tensorflow
1)点乘
import tensorflow as tf w = tf.Variable([[0.4], [1.2]], dtype=tf.float32) # w.shape: [2, 1] x = tf.Variable([range(1,6), range(5,10)], dtype=tf.float32) # x.shape: [2, 5] y = w * x # 等同于 y = tf.multiply(w, x) y.shape: [2, 5] sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) print sess.run(w) print sess.run(x) print sess.run(y)
运行结果如下:
2)矩阵乘
# coding:utf-8 import tensorflow as tf w = tf.Variable([[0.4, 1.2]], dtype=tf.float32) # w.shape: [1, 2] x = tf.Variable([range(1,6), range(5,10)], dtype=tf.float32) # x.shape: [2, 5] y = tf.matmul(w, x) # y.shape: [1, 5] sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) print sess.run(w) print sess.run(x) print sess.run(y)
运行结果如下:
到此这篇关于numpy和tensorflow中的各种乘法(点乘和矩阵乘)的文章就介绍到这了,更多相关numpy和tensorflow 乘法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python使用pywinauto驱动微信客户端实现公众号爬虫
这个项目是通过pywinauto控制windows(win10)上的微信PC客户端来实现公众号文章的抓取。代码分成server和client两部分。server接收client抓取的微信公众号文章,并且保存到数据库。另外server支持简单的搜索和导出功能。client通过pywinauto实现微信公众号文章的抓取。2021-05-05Python使用read_csv读数据遇到分隔符问题的2种解决方式
read.csv()可以从带分隔符的文本文件中导入数据,下面这篇文章主要给大家介绍了关于Python使用read_csv读数据遇到分隔符问题的2种解决方式,文中通过实例代码介绍的非常详细,需要的朋友可以参考下2022-07-07
最新评论