R语言数据类型知识点总结

 更新时间:2021年03月24日 15:15:37   作者:w3cschool  
在本篇文章里小编给大家整理的是一篇关于R语言数据类型知识点总结内容,有兴趣的朋友们可以学习下。

通常,在使用任何编程语言进行编程时,您需要使用各种变量来存储各种信息。 变量只是保留值的存储位置。 这意味着,当你创建一个变量,你必须在内存中保留一些空间来存储它们。

您可能想存储各种数据类型的信息,如字符,宽字符,整数,浮点,双浮点,布尔等。基于变量的数据类型,操作系统分配内存并决定什么可以存储在保留内存中。

与其他编程语言(如 C 中的 C 和 java)相反,变量不会声明为某种数据类型。 变量分配有 R 对象,R 对象的数据类型变为变量的数据类型。尽管有很多类型的 R 对象,但经常使用的是:

  • 矢量
  • 列表
  • 矩阵
  • 数组
  • 因子
  • 数据帧

这些对象中最简单的是向量对象,并且这些原子向量有六种数据类型,也称为六类向量。 其他 R 对象建立在原子向量之上。

数据类型 校验
Logical(逻辑型) TRUE, FALSE v <- TRUE print(class(v))

它产生以下结果 -

[1] "logical"
Numeric(数字) 12.3,5,999 v <- 23.5 print(class(v))

它产生以下结果 -

[1] "numeric"
Integer(整型) 2L,34L,0L v <- 2L print(class(v))

它产生以下结果 -

[1] "integer"
Complex(复合型) 3 + 2i v <- 2+5i print(class(v))

它产生以下结果 -

[1] "complex"
Character(字符) 'a' , "good", "TRUE", '23.4' v <- "TRUE" print(class(v))

它产生以下结果 -

[1] "character"
Raw(原型) "Hello" 被存储为 48 65 6c 6c 6f v <- charToRaw("Hello") print(class(v))

它产生以下结果 -

[1] "raw"

在 R 编程中,非常基本的数据类型是称为向量的 R 对象,其保存如上所示的不同类的元素。 请注意,在 R 中,类的数量不仅限于上述六种类型。 例如,我们可以使用许多原子向量并创建一个数组,其类将成为数组。

Vectors 向量

当你想用多个元素创建向量时,你应该使用 c() 函数,这意味着将元素组合成一个向量。

# Create a vector.
apple <- c('red','green',"yellow")
print(apple)

# Get the class of the vector.
print(class(apple))

当我们执行上面的代码,它产生以下结果

[1] "red" "green" "yellow"
[1] "character"

Lists 列表

列表是一个R对象,它可以在其中包含许多不同类型的元素,如向量,函数甚至其中的另一个列表。

# Create a list.
list1 <- list(c(2,5,3),21.3,sin)

# Print the list.
print(list1)

当我们执行上面的代码,它产生以下结果

[[1]]
[1] 2 5 3

[[2]]
[1] 21.3

[[3]]
function (x) .Primitive("sin")

Matrices 矩阵

矩阵是二维矩形数据集。 它可以使用矩阵函数的向量输入创建。

# Create a matrix.
M = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)
print(M)

当我们执行上面的代码,它产生以下结果

[,1] [,2] [,3]
[1,] "a" "a" "b" 
[2,] "c" "b" "a"

Arrays 数组

虽然矩阵被限制为二维,但阵列可以具有任何数量的维度。 数组函数使用一个 dim 属性创建所需的维数。 在下面的例子中,我们创建了一个包含两个元素的数组,每个元素为 3x3 个矩阵。

# Create an array.
a <- array(c('green','yellow'),dim = c(3,3,2))
print(a)

当我们执行上面的代码,它产生以下结果

, , 1

[,1]  [,2]  [,3] 
[1,] "green" "yellow" "green" 
[2,] "yellow" "green" "yellow"
[3,] "green" "yellow" "green" 

, , 2

[,1]  [,2]  [,3] 
[1,] "yellow" "green" "yellow"
[2,] "green" "yellow" "green" 
[3,] "yellow" "green" "yellow" 

Factors 因子

因子是使用向量创建的 r 对象。 它将向量与向量中元素的不同值一起存储为标签。 标签总是字符,不管它在输入向量中是数字还是字符或布尔等。 它们在统计建模中非常有用。

使用 factor() 函数创建因子。nlevels 函数给出级别计数。

# Create a vector.
apple_colors <- c('green','green','yellow','red','red','red','green')

# Create a factor object.
factor_apple <- factor(apple_colors)

# Print the factor.
print(factor_apple)
print(nlevels(factor_apple))

当我们执行上面的代码,它产生以下结果

[1] green green yellow red red red green 
Levels: green red yellow
# applying the nlevels function we can know the number of distinct values
[1] 3

Data Frames 数据帧

数据帧是表格数据对象。 与数据帧中的矩阵不同,每列可以包含不同的数据模式。 第一列可以是数字,而第二列可以是字符,第三列可以是逻辑的。 它是等长度的向量的列表。

使用 data.frame() 函数创建数据帧。

# Create the data frame.
BMI <- 	data.frame(
 gender = c("Male", "Male","Female"), 
 height = c(152, 171.5, 165), 
 weight = c(81,93, 78),
 Age = c(42,38,26)
)
print(BMI)

当我们执行上面的代码,它产生以下结果

gender height weight Age
1 Male 152.0  81 42
2 Male 171.5  93 38
3 Female 165.0  78 26 

到此这篇关于R语言数据类型知识点总结的文章就介绍到这了,更多相关R语言数据类型内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • R语言基本语法深入讲解

    R语言基本语法深入讲解

    这篇文章主要介绍了R语言基本语法深入讲解,文中内容介绍的很详细,有需要的同学可以研究下
    2021-03-03
  • R语言 出现矩阵/缺失值的解决方案

    R语言 出现矩阵/缺失值的解决方案

    这篇文章主要介绍了R语言 出现矩阵/缺失值的解决方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • R语言服务器安装R包实现过程

    R语言服务器安装R包实现过程

    这篇文章主要为大家介绍了R语言在服务器安装R包的实现过程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2021-11-11
  • R语言实现LASSO回归的方法

    R语言实现LASSO回归的方法

    这篇文章主要介绍了R语言实现LASSO回归的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • R语言控制结构知识点总结

    R语言控制结构知识点总结

    在本篇文章里小编给大家整理一篇关于R语言控制结构知识点总结内容,有兴趣的朋友们可以学习参考下。
    2021-03-03
  • R语言的一个加法函数使用介绍

    R语言的一个加法函数使用介绍

    这篇文章主要介绍了R语言的一个加法函数使用介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言关于“包”的知识点总结

    R语言关于“包”的知识点总结

    在本篇文章里小编给大家分享的是一篇关于R语言“包”的知识点总结内容,有兴趣的朋友们可以学习下。
    2021-03-03
  • R语言利用caret包比较ROC曲线的操作

    R语言利用caret包比较ROC曲线的操作

    这篇文章主要介绍了R语言利用caret包比较ROC曲线的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • Rstudio 修改工作路径(三种方法总结)

    Rstudio 修改工作路径(三种方法总结)

    这篇文章主要介绍了Rstudio 修改工作路径(三种方法总结),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言 小数点位数的设置方式

    R语言 小数点位数的设置方式

    这篇文章主要介绍了R语言 小数点位数的设置方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03

最新评论