如何用python识别滑块验证码中的缺口

 更新时间:2021年04月01日 15:39:55   作者:不正经的kimol君  
这篇文章主要介绍了如何用python识别滑块中的缺口,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下

验证码往往是爬虫路上的一只拦路虎,而其花样也是层出不穷:图片验证、滑块验证、交互式验证、行为验证等。随着OCR技术的成熟,图片验证已经渐渐淡出主流,而滑块验证越来越多地出现在大众视野。
“这么厉害,这小子长啥样呢?”没错,它就长这损sai:

解决它的方法也很直观,首先找到缺口的位置(通常只需要X轴的位置),然后拖动滑块即可。
今天kimol君将带领大家用python识别出滑块验证中的缺口位置。

一、缺口识别

识别图片中的缺口,主要是利用python中的图像处理库cv2,其安装方法如下:

pip install opencv-python

注:这里并不是“pip install cv2”哦~

1.读取图片

滑块验证的图片分为两部分,一个是背景图片:

另一个是缺口图片:

利用imread函数将其读取:

# 读取背景图片和缺口图片
bg_img = cv2.imread('bg.jpg') # 背景图片
tp_img = cv2.imread('tp.png') # 缺口图片

2.识别图片边缘

为了更好地将缺口与背景匹配,我们首先得识别出图片的边缘:

# 识别图片边缘
bg_edge = cv2.Canny(bg_img, 100, 200)
tp_edge = cv2.Canny(tp_img, 100, 200)

这一步很关键!否则缺口匹配将不准确。

这里得到了图片边缘的灰度图,进一步将其图片格式转为RGB格式:

# 转换图片格式
bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)
tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)

转换后的背景图为:

转换后的缺口图为:

3.缺口匹配

利用cv2中的matchTemplate函数,可以在背景图片中搜索对应的缺口,具体代码如下:

# 缺口匹配
res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)

res为每个位置的匹配结果,代表了匹配的概率,选出其中概率最高的点,即为缺口匹配的位置:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # 寻找最优匹配

min_val,max_val,min_loc,max_loc分别为匹配的最小值、匹配的最大值、最小值的位置、最大值的位置。
ps.当然,这里完全可以自己写一个循环来实现,但是有现成的函数为什么不用呢?

至此,我们已经有了缺口的位置,其X轴坐标为:

X = max_loc[0]

为了更直观地展示缺口的位置,我们将缺口用矩形框标注出来:

# 绘制方框
th, tw = tp_pic.shape[:2] 
tl = max_loc # 左上角点的坐标
br = (tl[0]+tw,tl[1]+th) # 右下角点的坐标
cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2) # 绘制矩形
cv2.imwrite('out.jpg', bg_img) # 保存在本地

结果如下:

完美~ 收工!!!

二、完整代码

为了在实际应用中更方便的使用,我们将代码封装为一个函数:

def identify_gap(bg,tp,out):
 '''
 bg: 背景图片
 tp: 缺口图片
 out:输出图片
 '''
 # 读取背景图片和缺口图片
 bg_img = cv2.imread(bg) # 背景图片
 tp_img = cv2.imread(tp) # 缺口图片
 
 # 识别图片边缘
 bg_edge = cv2.Canny(bg_img, 100, 200)
 tp_edge = cv2.Canny(tp_img, 100, 200)
 
 # 转换图片格式
 bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)
 tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)
 
 # 缺口匹配
 res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)
 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # 寻找最优匹配
 
 # 绘制方框
 th, tw = tp_pic.shape[:2] 
 tl = max_loc # 左上角点的坐标
 br = (tl[0]+tw,tl[1]+th) # 右下角点的坐标
 cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2) # 绘制矩形
 cv2.imwrite(out, bg_img) # 保存在本地
 
 # 返回缺口的X坐标
 return tl[0] 

这里选择了读取本地图片文件,在爬虫过程中其实不是特别方便。如果有感兴趣的小伙伴,可以自己改动一下,将输入改为图片流即可。

以上就是如何用python识别滑块中的缺口的详细内容,更多关于python识别滑块中的缺口的资料请关注脚本之家其它相关文章!

相关文章

  • Python的Tkinter点击按钮触发事件的例子

    Python的Tkinter点击按钮触发事件的例子

    今天小编就为大家分享一篇Python的Tkinter点击按钮触发事件的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python 实现批量替换文本中的某部分内容

    python 实现批量替换文本中的某部分内容

    今天小编就为大家分享一篇python 实现批量替换文本中的某部分内容,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python常用文件操作(读写追加等)

    python常用文件操作(读写追加等)

    在Python中,文件操作是一项常用的任务,本节将介绍如何执行基本的文件操作,如读取、写入和追加数据,我们将通过实例代码详细讲解每个知识点
    2023-06-06
  • python用matplotlib绘制二维坐标轴,设置箭头指向,文本内容方式

    python用matplotlib绘制二维坐标轴,设置箭头指向,文本内容方式

    这篇文章主要介绍了python用matplotlib绘制二维坐标轴,设置箭头指向,文本内容方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python编写nmap扫描工具

    Python编写nmap扫描工具

    NMAP是一款开源的网络探测和安全审核的工具,今天我们用python的模拟实现一个简单版本的端口扫描工具,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • Pytorch中的masked_fill基本知识操作

    Pytorch中的masked_fill基本知识操作

    本文主要介绍了PyTorch中的masked_fill函数的基本知识和使用方法,masked_fill函数接受一个输入张量和一个布尔掩码作为主要参数,掩码的形状必须与输入张量相同,掩码操作根据掩码中的布尔值在输出张量中填充指定的值或保留输入张量中的值
    2024-10-10
  • Python元组 tuple的概念与基本操作详解【定义、创建、访问、计数、推导式等】

    Python元组 tuple的概念与基本操作详解【定义、创建、访问、计数、推导式等】

    这篇文章主要介绍了Python元组 tuple的概念与基本操作,结合实例形式详细分析了Python元组的定义、创建、访问、计数、推导式等常见操作技巧与操作注意事项,需要的朋友可以参考下
    2019-10-10
  • 基于python实现生成指定大小txt文档

    基于python实现生成指定大小txt文档

    这篇文章主要介绍了基于python实现生成指定大小txt文档,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • python中的Pytorch建模流程汇总

    python中的Pytorch建模流程汇总

    这篇文章主要介绍了python中的Pytorch建模流程汇总,主要帮大家帮助大家梳理神经网络训练的架构,具有一的的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助
    2022-03-03
  • python re.match函数的具体使用

    python re.match函数的具体使用

    本文主要介绍了python re.match函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02

最新评论