python数字图像处理之估计噪声参数

 更新时间:2021年04月07日 09:36:43   作者:jasneik  
这篇文章主要介绍了python数字图像处理之估计噪声参数,图像复原与重建,想了解图像处理的同学,一定要好好看看

估计噪声参数

周期噪声的参数通常是通过检测图像的傅里叶谱来估计的。

只能使用由传感器生成的图像时,可由一小片恒定的背景灰度来估计PDF的参数。

来自图像条带的数据的最简单用途是,计算灰度级的均值和方差。考虑由 S S S表示的一个条带(子图像),并令 P S ( z i ) P_{S}(z_i) PS​(zi​), i = 0 , 1 , 2 , … , L − 1 i = 0, 1, 2, \dots, L-1 i=0,1,2,…,L−1表示 S S S中的像素灰度的概率估计(归一化直方图值),其中 L L L是整数个图像中的可能灰度(对8比特而言, L L L为256)。则均值和方差估计如下:

直方图的形状确认最接近的PDF匹配。若形状大致为高斯分布的,则均值和方差就是我们所需要的,因为高斯PDF完全由这两个参数规定。对于其它PDF,我们可以使用均值和方差来求解参数 a和 b。

对于冲激噪声的处理是不同的,因为需要的估计是黑、白像素出现的实际概率。要获得这个估计,就需要看到黑色像素和白色像素,因此要算出噪声的有意义的直方图,图像中就需要有一个相对恒定的中灰度区域。对应于黑色像素和白色像素的峰值高度是式(5.16)中 P p和Ps​的估计。

# 一些重要的噪声对应灰度的直方图
img_ori = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH05/Fig0503 (original_pattern).tif", 0)
# 竖图[40:210, 35:60],横图[40:60, 35:220]
img_gauss    = add_gaussian_noise(img_ori, mu=0, sigma=0.05)[40:60, 35:220]
img_rayleigh  = add_rayleigh_noise(img_ori, a=1)[40:60, 35:220]
img_gamma    = add_gamma_noise(img_ori, scale=2)[40:60, 35:220]
img_exponent  = add_exponent_noise(img_ori, scale=3)[40:60, 35:220]
img_average   = add_average_noise(img_ori, mean=10, sigma=1.5)[40:60, 35:220]

ps = 0.05
pp = 0.02
img_salt_pepper = add_salt_pepper(img_ori, ps=ps, pp=pp)[40:60, 35:220]

show_list = ['img_gauss', 'img_rayleigh', 'img_gamma', 'img_exponent', 'img_average', 'img_salt_pepper']

fig = plt.figure(figsize=(15, 15))

for i in range(len(show_list)):
    if i >= 3:
      # 显示图像
      ax = fig.add_subplot(4, 3, i + 3 + 1)
      ax.imshow(eval(show_list[i]), 'gray'), ax.set_xticks([]), ax.set_yticks([]), ax.set_title(show_list[i].split('_')[-1])
      # 对应图像的直方图
      ax = fig.add_subplot(4, 3, i + 1 + 6)
      hist, bins = np.histogram(eval(show_list[i]).flatten(), bins=255, range=[0, 255], density=True)
      bar = ax.bar(bins[:-1], hist[:]), ax.set_xticks([]), ax.set_yticks([]),
    else:
      # 显示图像
      ax = fig.add_subplot(4, 3, i + 1)
      ax.imshow(eval(show_list[i]), 'gray'), ax.set_xticks([]), ax.set_yticks([]), ax.set_title(show_list[i].split('_')[-1])
      # 对应图像的直方图
      ax = fig.add_subplot(4, 3, i + 1 + 3)
      hist, bins = np.histogram(eval(show_list[i]).flatten(), bins=255, range=[0, 255], density=True)
      bar = ax.bar(bins[:-1], hist[:]), ax.set_xticks([]), ax.set_yticks([]),
      
plt.tight_layout()
plt.show()

# 椒盐噪声的参数估计
hist, bins = np.histogram(img_salt_pepper.flatten(), bins=255, range=[0, 255], density=True)
print(f"Original pp -> {pp:.3f}, ps -> {ps:.3f}")
print(f'Estimate PP -> {hist[0]:.3f}, PS -> {hist[-1]:.3f}')
Original pp -> 0.020, ps -> 0.050
Estimate PP -> 0.018, PS -> 0.050
# 内嵌图像
fig, main_ax = plt.subplots()
hist, bins = np.histogram(img_gauss.flatten(), bins=255, range=[0, 255], density=True)
bar = main_ax.bar(bins[:-1], hist[:]), main_ax.set_xticks([]), main_ax.set_yticks([])

inset_ax = fig.add_axes([0.1, 0.3, 0.2, 0.5])
inset_ax.imshow(img_gauss.reshape(185, 20), 'gray'), inset_ax.set_xticks([]), inset_ax.set_yticks([])

plt.show()

以上就是python数字图像处理之估计噪声参数的详细内容,更多关于python图像处理估计噪声的资料请关注脚本之家其它相关文章!

相关文章

  • Python双向循环链表实现方法分析

    Python双向循环链表实现方法分析

    这篇文章主要介绍了Python双向循环链表,结合实例形式分析了Python双向链表的定义、遍历、添加、删除、搜索等相关操作技巧,需要的朋友可以参考下
    2018-07-07
  • 简单介绍Python2.x版本中的cmp()方法的使用

    简单介绍Python2.x版本中的cmp()方法的使用

    这篇文章主要介绍了简单介绍Python2.x版本中的cmp()方法的使用,然而该方法在Python3.x版本中已并不再内置...需要的朋友可以参考下
    2015-05-05
  • 谈谈Python中的while循环语句

    谈谈Python中的while循环语句

    这篇文章主要给大家介绍了关于Python中while循环语句的相关资料,使用while循环语句可以解决程序中需要重复执行的操作,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2019-03-03
  • Python加密方法小结【md5,base64,sha1】

    Python加密方法小结【md5,base64,sha1】

    这篇文章主要介绍了Python加密方法,结合实例形式总结分析了md5,base64,sha1的简单加密方法,需要的朋友可以参考下
    2017-07-07
  • Macbook air m1安装python/anaconda全过程(图文)

    Macbook air m1安装python/anaconda全过程(图文)

    这篇文章主要介绍了Macbook air m1安装python/anaconda全过程(图文),文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • 深入了解Python enumerate和zip

    深入了解Python enumerate和zip

    这篇文章主要介绍了Python enumerate和zip的相关资料,文中讲解非常细致,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • Python批量提取PDF文件中文本的脚本

    Python批量提取PDF文件中文本的脚本

    这篇文章主要为大家详细介绍了Python批量提取PDF文件中文本的脚本,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • 一文了解Python中NotImplementedError的作用

    一文了解Python中NotImplementedError的作用

    NotImplementedError是一个内置异常类,本文主要介绍了一文了解Python中NotImplementedError的作用,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • Python解决鸡兔同笼问题的方法

    Python解决鸡兔同笼问题的方法

    这篇文章主要介绍了Python解决鸡兔同笼问题的方法,分析了鸡兔同笼问题的原理与解决思路,并给出了Python实现的代码,非常具有参考借鉴价值,需要的朋友可以参考下
    2014-12-12
  • python数据处理实战(必看篇)

    python数据处理实战(必看篇)

    下面小编就为大家带来一篇python数据处理实战(必看篇)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06

最新评论