MongoDB聚合group的操作指南

 更新时间:2021年04月08日 09:38:57   作者:shaomine  
这篇文章主要给大家介绍了关于MongoDB聚合group的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

MongoDB 聚合

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的 count(*)。

基本语法为:db.collection.aggregate( [ <stage1>, <stage2>, ... ] )

现在在mycol集合中有以下数据:

{ "_id" : 1, "name" : "tom", "sex" : "男", "score" : 100, "age" : 34 }
{ "_id" : 2, "name" : "jeke", "sex" : "男", "score" : 90, "age" : 24 }
{ "_id" : 3, "name" : "kite", "sex" : "女", "score" : 40, "age" : 36 }
{ "_id" : 4, "name" : "herry", "sex" : "男", "score" : 90, "age" : 56 }
{ "_id" : 5, "name" : "marry", "sex" : "女", "score" : 70, "age" : 18 }
{ "_id" : 6, "name" : "john", "sex" : "男", "score" : 100, "age" : 31 }

1、$sum计算总和。

  Sql: select sex,count(*) frommycol group by sex

  MongoDb: db.mycol.aggregate([{$group: {_id: '$sex', personCount: {$sum: 1}}}])

  Sql: select sex,sum(score) totalScore frommycol group by sex

  MongoDb: db.mycol.aggregate([{$group: {_id: '$sex', totalScore: {$sum: '$score'}}}])

2、$avg 计算平均值

  Sql: select sex,avg(score) avgScore frommycol group by sex

  Mongodb: db.mycol.aggregate([{$group: {_id: '$sex', avgScore: {$avg: '$score'}}}])

3、$max获取集合中所有文档对应值得最大值。

  Sql: select sex,max(score) maxScore frommycol group by sex

  Mongodb: db.mycol.aggregate([{$group: {_id: '$sex', maxScore: {$max: '$score'}}}])

4、$min 获取集合中所有文档对应值得最小值。

  Sql: select sex,min(score) minScore frommycol group by sex

  Mongodb: db.mycol.aggregate([{$group: {_id: '$sex', minScore: {$min: '$score'}}}])

5、$push 把文档中某一列对应的所有数据插入值到一个数组中。

  Mongodb: db.mycol.aggregate([{$group: {_id: '$sex', scores : {$push: '$score'}}}])

6、$addToSet把文档中某一列对应的所有数据插入值到一个数组中,去掉重复的

  db.mycol.aggregate([{$group: {_id: '$sex', scores : {$addToSet: '$score'}}}])

7、 $first根据资源文档的排序获取第一个文档数据。

  db.mycol.aggregate([{$group: {_id: '$sex', firstPerson : {$first: '$name'}}}])

8、 $last根据资源文档的排序获取最后一个文档数据。

  db.mycol.aggregate([{$group: {_id: '$sex', lastPerson : {$last: '$name'}}}])

9、全部统计null

  db.mycol.aggregate([{$group:{_id:null,totalScore:{$push:'$score'}}}])

例子

  现在在t2集合中有以下数据:

  { "country" : "china", "province" : "sh", "userid" : "a" }
  { "country" : "china", "province" : "sh", "userid" : "b" }
  { "country" : "china", "province" : "sh", "userid" : "a" }
  { "country" : "china", "province" : "sh", "userid" : "c" }
  { "country" : "china", "province" : "bj", "userid" : "da" }
  { "country" : "china", "province" : "bj", "userid" : "fa" }

  需求是统计出每个country/province下的userid的数量(同一个userid只统计一次)

  过程如下。

  首先试着这样来统计:

  db.t2.aggregate([{$group:{"_id":{"country":"$country","prov":"$province"},"number":{$sum:1}}}])

  结果是错误的:

  原因是,这样来统计不能区分userid相同的情况 (上面的数据中sh有两个 userid = a)

  为了解决这个问题,首先执行一个group,其id 是 country, province, userid三个field:

  db.t2.aggregate([ { $group: {"_id": { "country" : "$country", "province": "$province" , "uid" : "$userid" } } } ])

  可以看出,这步的目的是把相同的userid只剩下一个。

  然后第二步,再第一步的结果之上再执行统计:

  db.t2.aggregate([ 
  { $group: {"_id": { "country" : "$country", "province": "$province" , "uid" : "$userid" } } } , 
  { $group: {"_id": { "country" : "$_id.country", "province": "$_id.province" }, count : { $sum : 1 } } } 
  ])

  这回就对了

  加入一个$project操作符,把_id去掉

  db.t2.aggregate([ { $group: {"_id": { "country" : "$country", "province": "$province" , "uid" : "$userid" } } } , 
  { $group: {"_id": { "country" : "$_id.country", "province": "$_id.province" }, count: { $sum : 1 } } }, 
  { $project : {"_id": 0, "country" : "$_id.country", "province" : "$_id.province", "count" : 1}} 
  ])

  最终结果如下:

管道的概念

管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。

这里我们介绍一下聚合框架中常用的几个操作:

  • $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。
  • match:用于过滤数据,只输出符合条件的文档。match使用MongoDB的标准查询操作。
  • $limit:用来限制MongoDB聚合管道返回的文档数。
  • $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。
  • $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。
  • $group:将集合中的文档分组,可用于统计结果。
  • $sort:将输入文档排序后输出。
  • $geoNear:输出接近某一地理位置的有序文档。

1、$project实例

  db.mycol.aggregate({$project:{name : 1, score : 1}})

  这样的话结果中就只还有_id,name和score三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

  db.mycol.aggregate({$project:{_id : 0, name : 1, score : 1}})

2、$match实例

  $match用于获取分数大于30小于并且小于100的记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处理

  db.mycol.aggregate([{$match :{score: {$gt: 30, $lt: 100}}},{$group:{_id:'$sex',count:{$sum:1}}}]) 

总结

到此这篇关于MongoDB聚合group的文章就介绍到这了,更多相关 MongoDB聚合group内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Windows或Linux系统中备份和恢复MongoDB数据的教程

    Windows或Linux系统中备份和恢复MongoDB数据的教程

    不得不说MongoDB的备份回复操作对比其他数据库来说真的算得上是简便的,无论是在Windows的命令行中或者是Linux里的脚本执行,这里我们就来看一下Windows或Linux系统中备份和恢复MongoDB数据的教程
    2016-06-06
  • Linux系统下MongoDB的简单安装与基本操作

    Linux系统下MongoDB的简单安装与基本操作

    这篇文章主要介绍了Linux系统下MongoDB的简单安装与基本操作,需要的朋友可以参考下
    2015-04-04
  • MongoDB分页查询缓慢怎么办

    MongoDB分页查询缓慢怎么办

    在大数据应用中,MongoDB的分页查询存在性能问题,特别是数据量大时,本文探讨了性能下降的原因,并提出了多种优化策略,如有效使用索引、基于索引的游标分页、使用聚合框架、减少返回数据量、使用缓存机制等,旨在改善大规模数据场景下的查询效率
    2024-09-09
  • MongoDB TTL索引的实例详解

    MongoDB TTL索引的实例详解

    这篇文章主要介绍了 MongoDB TTL索引的实例详解的相关资料,希望通过本文能帮助到大家,让大家理解掌握这部分内容,需要的朋友可以参考下
    2017-10-10
  • MongoDB可视化工具mongodb-compass

    MongoDB可视化工具mongodb-compass

    这篇文章介绍了MongoDB的可视化工具mongodb-compass,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-06-06
  • Linux服务器下MariaDB 10自动化安装部署

    Linux服务器下MariaDB 10自动化安装部署

    这篇文章主要介绍了Linux服务器下MariaDB 10自动化安装部署,需要的朋友可以参考下
    2016-08-08
  • MongoDB学习笔记之MapReduce使用示例

    MongoDB学习笔记之MapReduce使用示例

    这篇文章主要介绍了MongoDB学习笔记之MapReduce使用示例,本文直接给出实例代码,需要的朋友可以参考下
    2015-07-07
  • win7平台快速安装、启动mongodb的方法

    win7平台快速安装、启动mongodb的方法

    这篇文章主要介绍了win7平台快速安装、启动mongodb的方法,结合图文形式分析了win7平台下载、安装、启动、配置MongoDB数据库的方法与注意事项,需要的朋友可以参考下
    2020-05-05
  • 关于NoSQL之MongoDB的一些总结

    关于NoSQL之MongoDB的一些总结

    这篇文章主要介绍了关于NoSQL之MongoDB的一些总结的相关资料,需要的朋友可以参考下
    2015-07-07
  • Java操作mongodb的模糊查询和精确查询

    Java操作mongodb的模糊查询和精确查询

    这篇文章主要介绍了Java操作mongodb的模糊查询和精确查询,使用regex关键字实现模糊查询操作,具体实现代码大家参考下本文
    2017-11-11

最新评论