pytorch实现线性回归

 更新时间:2021年04月09日 14:35:06   作者:逝去〃年华  
这篇文章主要为大家详细介绍了pytorch实现线性回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

pytorch实现线性回归代码练习实例,供大家参考,具体内容如下

欢迎大家指正,希望可以通过小的练习提升对于pytorch的掌握

# 随机初始化一个二维数据集,使用朋友torch训练一个回归模型
import numpy as np
import random
import matplotlib.pyplot as plt

x = np.arange(20)
y = np.array([5*x[i] + random.randint(1,20) for i in range(len(x))])    # random.randint(参数1,参数2)函数返回参数1和参数2之间的任意整数
print('-'*50)
# 打印数据集
print(x)
print(y)

import torch
x_train = torch.from_numpy(x).float()
y_train = torch.from_numpy(y).float()

# model
class LinearRegression(torch.nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        # 输入与输出都是一维的
        self.linear = torch.nn.Linear(1,1)
    def forward(self,x):
        return self.linear(x)

# 新建模型,误差函数,优化器
model = LinearRegression()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(),0.001)
# 开始训练
num_epoch = 20
for i in range(num_epoch):
    input_data = x_train.unsqueeze(1)
    target = y_train.unsqueeze(1)           # unsqueeze(1)在第二维增加一个维度
    out = model(input_data)
    loss = criterion(out,target)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    print("Eopch:[{}/{},loss:[{:.4f}]".format(i+1,num_epoch,loss.item()))
    if ((i+1)%2 == 0):
        predict = model(input_data)
        plt.plot(x_train.data.numpy(),predict.squeeze(1).data.numpy(),"r")
        loss = criterion(predict,target)
        plt.title("Loss:{:.4f}".format(loss.item()))
        plt.xlabel("X")
        plt.ylabel("Y")
        plt.scatter(x_train,y_train)
        plt.show()

实验结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

最新评论