基础语音识别-食物语音识别baseline(CNN)

 更新时间:2021年04月16日 15:03:22   作者:罐罐罐子  
这篇文章主要介绍了一个基础语音识别题目-食物语音识别baseline(CNN),代码详细吗,对于想要学习语音识别的朋友可以参考下

MFCC

梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC)。

MFCC通常有以下之过程:

  1. 将一段语音信号分解为多个讯框。
  2. 将语音信号预强化,通过一个高通滤波器。
  3. 进行傅立叶变换,将信号变换至频域。
  4. 将每个讯框获得的频谱通过梅尔滤波器(三角重叠窗口),得到梅尔刻度。
  5. 在每个梅尔刻度上提取对数能量。
  6. 对上面获得的结果进行离散傅里叶反变换,变换到倒频谱域。
  7. MFCC就是这个倒频谱图的幅度(amplitudes)。一般使用12个系数,与讯框能量叠加得13维的系数。

MFCC

数据集

数据集来自Eating Sound Collection,数据集中包含20种不同食物的咀嚼声音,赛题任务是给这些声音数据建模,准确分类。

类别包括: aloe, ice-cream, ribs, chocolate, cabbage, candied_fruits, soup, jelly, grapes, pizza, gummies, salmon, wings, burger, pickles, carrots, fries, chips, noodles, drinks

训练集的大小: 750

测试集的大小: 250

1 下载和解压数据集

!wget http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531887/train_sample.zip
!unzip -qq train_sample.zip
!\rm train_sample.zip
!wget http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531887/test_a.zip
!unzip -qq test_a.zip
!\rm test_a.zip

2 加载库函数

# 基本库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split  #划分数据集
from sklearn.metrics import classification_report   #用于显示主要分类指标的文本报告
from sklearn.model_selection import GridSearchCV #自动调参
from sklearn.preprocessing import MinMaxScaler #归一化

加载深度学习框架

# 搭建分类模型所需要的库
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPool2D, Dropout
from tensorflow.keras.utils import to_categorical 
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC #支持向量分类
!pip install librosa --user #加载音频处理库
# 其他库
import os
import librosa #音频处理库
import librosa.display
import glob

3 特征提取以及数据集的建立

建立类别标签字典

feature = []
label = []
# 建立类别标签,不同类别对应不同的数字。
label_dict = {'aloe': 0, 'burger': 1, 'cabbage': 2,'candied_fruits':3, 'carrots': 4, 'chips':5,
                  'chocolate': 6, 'drinks': 7, 'fries': 8, 'grapes': 9, 'gummies': 10, 'ice-cream':11,
                  'jelly': 12, 'noodles': 13, 'pickles': 14, 'pizza': 15, 'ribs': 16, 'salmon':17,
                  'soup': 18, 'wings': 19}
label_dict_inv = {v:k for k,v in label_dict.items()}

提取梅尔频谱特征

from tqdm import tqdm
def extract_features(parent_dir, sub_dirs, max_file=10, file_ext="*.wav"):
    c = 0
    label, feature = [], []
    for sub_dir in sub_dirs:
        for fn in tqdm(glob.glob(os.path.join(parent_dir, sub_dir, file_ext))[:max_file]): # 遍历数据集的所有文件
           # segment_log_specgrams, segment_labels = [], []
            #sound_clip,sr = librosa.load(fn)
            #print(fn)
            label_name = fn.split('/')[-2]
            label.extend([label_dict[label_name]])
            X, sample_rate = librosa.load(fn,res_type='kaiser_fast')
            mels = np.mean(librosa.feature.melspectrogram(y=X,sr=sample_rate).T,axis=0) # 计算梅尔频谱(mel spectrogram),并把它作为特征
            feature.extend([mels])
    return [feature, label]
# 自己更改目录
parent_dir = './train_sample/'
save_dir = "./"
folds = sub_dirs = np.array(['aloe','burger','cabbage','candied_fruits',
                             'carrots','chips','chocolate','drinks','fries',
                            'grapes','gummies','ice-cream','jelly','noodles','pickles',
                            'pizza','ribs','salmon','soup','wings'])
# 获取特征feature以及类别的label
temp = extract_features(parent_dir,sub_dirs,max_file=100)
temp = np.array(temp)
data = temp.transpose()

获取特征和标签

# 获取特征
X = np.vstack(data[:, 0])
# 获取标签
Y = np.array(data[:, 1])
print('X的特征尺寸是:',X.shape)
print('Y的特征尺寸是:',Y.shape)

X的特征尺寸是: (1000, 128)

Y的特征尺寸是: (1000,)

独热编码

# 在Keras库中:to_categorical就是将类别向量转换为二进制(只有0和1)的矩阵类型表示
Y = to_categorical(Y)
print(X.shape)
print(Y.shape)

(1000, 128)

(1000, 20)

把数据集划分为训练集和测试集

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 1, stratify=Y)
print('训练集的大小',len(X_train))
print('测试集的大小',len(X_test))

训练集的大小 750

测试集的大小 250

X_train = X_train.reshape(-1, 16, 8, 1)
X_test = X_test.reshape(-1, 16, 8, 1)

4 建立模型

搭建CNN网络

model = Sequential()
# 输入的大小
input_dim = (16, 8, 1)
model.add(Conv2D(64, (3, 3), padding = "same", activation = "tanh", input_shape = input_dim))# 卷积层
model.add(MaxPool2D(pool_size=(2, 2)))# 最大池化
model.add(Conv2D(128, (3, 3), padding = "same", activation = "tanh")) #卷积层
model.add(MaxPool2D(pool_size=(2, 2))) # 最大池化层
model.add(Dropout(0.1))
model.add(Flatten()) # 展开
model.add(Dense(1024, activation = "tanh"))
model.add(Dense(20, activation = "softmax")) # 输出层:20个units输出20个类的概率
# 编译模型,设置损失函数,优化方法以及评价标准
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
model.summary()

模型细节

训练模型

# 训练模型
model.fit(X_train, Y_train, epochs = 100, batch_size = 15, validation_data = (X_test, Y_test))

5 预测测试集

def extract_features(test_dir, file_ext="*.wav"):
    feature = []
    for fn in tqdm(glob.glob(os.path.join(test_dir, file_ext))[:]): # 遍历数据集的所有文件
        X, sample_rate = librosa.load(fn,res_type='kaiser_fast')
        mels = np.mean(librosa.feature.melspectrogram(y=X,sr=sample_rate).T,axis=0) # 计算梅尔频谱(mel spectrogram),并把它作为特征
        feature.extend([mels])
    return feature
X_test = extract_features('./test_a/')
X_test = np.vstack(X_test)
predictions = model.predict(X_test.reshape(-1, 16, 8, 1))
preds = np.argmax(predictions, axis = 1)
preds = [label_dict_inv[x] for x in preds]
path = glob.glob('./test_a/*.wav')
result = pd.DataFrame({'name':path, 'label': preds})
result['name'] = result['name'].apply(lambda x: x.split('/')[-1])
result.to_csv('submit.csv',index=None)
!ls ./test_a/*.wav | wc -l
!wc -l submit.csv

6 结果

在这里插入图片描述

到此这篇关于基础语音识别-食物语音识别baseline(CNN)的文章就介绍到这了,更多相关语音识别的内容请搜索脚本之家以前的文章或继续浏览下面的相关文章,希望大家以后多多支持脚本之家!

相关文章

  • Python基本语法之运算符功能与用法详解

    Python基本语法之运算符功能与用法详解

    这篇文章主要介绍了Python基本语法之运算符功能与用法,结合实例形式总结分析了Python常见运算符相关使用技巧与操作注意事项,需要的朋友可以参考下
    2019-10-10
  • Python Web程序部署到Ubuntu服务器上的方法

    Python Web程序部署到Ubuntu服务器上的方法

    在本文记录了我在Ubuntu中部署Flask Web站点的过程, 其中包括用户创建、代码获取、Python3环境的安装、虚拟环境设置、uWSGI启动程序设置,并将Nginx作为前端反向代理,需要的朋友参考下吧
    2018-02-02
  • Python实现大数据收集至excel的思路详解

    Python实现大数据收集至excel的思路详解

    这篇文章主要介绍了Python实现大数据收集至excel的思路,本文通过完整代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-01-01
  • Python实现边缘提取的示例代码

    Python实现边缘提取的示例代码

    这篇文章主要为大家详细介绍了Python计算机视觉中如何实现边缘提取,文中的示例代码讲解详细,对我们学习有一定帮助,需要的可以参考一下
    2022-05-05
  • Python实战基础之Pandas统计某个数据列的空值个数

    Python实战基础之Pandas统计某个数据列的空值个数

    我们在处理数据的时候,经常需要检查数据的质量,也需要知道出问题的数据在哪个位置,下面这篇文章主要给大家介绍了关于Python实战基础之利用Pandas统计某个数据列空值个数的相关资料,需要的朋友可以参考下
    2022-08-08
  • 详解Python如何利用pdfplumber提取PDF中的表格

    详解Python如何利用pdfplumber提取PDF中的表格

    pdfplumber 是一个开源的 python 工具库 ,它可以轻松的获取 PDF 文本内容、标题、表格、尺寸等各种信息,今天来介绍如何使用它来提取 PDF 中的表格,文中通过代码和图片讲解的非常详细,需要的朋友可以参考下
    2024-04-04
  • 详解Python中for循环的使用

    详解Python中for循环的使用

    这篇文章主要介绍了Python中for循环的使用,来自于IBM官方网站技术文档,需要的朋友可以参考下
    2015-04-04
  • jupyter notebook实现显示行号

    jupyter notebook实现显示行号

    这篇文章主要介绍了jupyter notebook实现显示行号,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • python类的实例化问题解决

    python类的实例化问题解决

    这篇文章主要介绍了python类的实例化问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 基于python + django + whoosh + jieba 分词器实现站内检索功能

    基于python + django + whoosh + jieba 分词器实现站内检索功能

    这篇文章主要介绍了基于python + django + whoosh + jieba 分词器实现站内检索功能,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-08-08

最新评论