Datawhale练习之二手车价格预测

 更新时间:2021年04月19日 14:15:05   作者:weixin_42143139  
此篇文章是关于Datawhale练习,代码完整,但由于该数据集中数据特征较少(39维),以下可作为少量特征情况下的分析。当特征数目过大(成千上万)时,需要继续学习。需要的朋友可以参考下

数据探索性分析(EDA)

1. 总览数据概况

数据库载入

#coding:utf-8
#导入warnings包,利用过滤器来实现忽略警告语句。
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

数据载入

## 1) 载入训练集和测试集;
path = './'
Train_data = pd.read_csv(path+'car_train_0110.csv', sep=' ')
Test_data = pd.read_csv(path+'car_testA_0110.csv', sep=' ')

确定path,如果是在notebook环境,我通常使用 !dir查看当前目录

在这里插入图片描述

特征说明

在这里插入图片描述

新技能:使用.append()同时观察前5行与后5行

## 2) 简略观察数据(head()+shape)
Train_data.head().append(Train_data.tail())

在这里插入图片描述

观察数据维度

Train_data.shape,Test_data.shape

在这里插入图片描述

总览概况: .describe()查看统计量,.info()查看数据类型

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.1 判断数据缺失和异常

1.1.1 查看nan

Train_data.shape,Test_data.shape

在这里插入图片描述

也可直接查看nan,有以下两种方式 ↓ :

Train_data.isnull().sum()

在这里插入图片描述

可视化na更直观

# find na 
tmp = df_train.isnull().any()
tmp[tmp.values==True]

在这里插入图片描述

新技能: msno库(缺失值可视化)的使用

Train_data.isnull().sum().plot( kind= 'bar')

在这里插入图片描述

可视化看下缺省值

msno.matrix(Train_data.sample(250))

其中,Train_data.sample(250)表示随机抽样250行,白色条纹表示缺失

在这里插入图片描述

直接显示未缺失的样本数量/每特征

msno.bar(Train_data.sample(250),labels= True)

在这里插入图片描述

使用msno中的 .heatmap()查看缺失值之间的相关性

msno.heatmap(Train_data.sample(250))

在这里插入图片描述

1.1.2 *异常值检测(重要!易忽略)

通过Train_data.info()了解数据类型

Train_data.info()

1.2 了解预测值的分布

特征分为类别特征和数字特征

查看分布的意义在于:

a. 及时将非正态分布数据变化为正态分布数据

b. 异常检测

1.2.1 数字特征分析

Train_data['price']

发现都是int

在这里插入图片描述

统计分布 ↓

Train_data['price'].value_counts()

在这里插入图片描述

## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

结论:price不服从正态分布,因此在进行回归之前,它必须进行转换。无界约翰逊分布拟合效果较好。

1.2.1.1 相关性分析
1.2.1.2 *偏度和峰值

偏度(skewness),统计数据分布偏斜方向和程度,是统计数据分布非对称程度的数字特征。定义上偏度是样本的三阶标准化矩。

在这里插入图片描述

峰度(peakedness;kurtosis)又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。

在这里插入图片描述

## 2) 查看skewness and kurtosis
sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())

在这里插入图片描述

批量计算skew

Train_data.skew()

在这里插入图片描述

查看skew的分布情况

在这里插入图片描述

批量计算kurt

Train_data.kurt()

在这里插入图片描述

查看kurt的分布情况

在这里插入图片描述

查看目标变量的分布

## 3) 查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

在这里插入图片描述

结论:大于20000得值极少,其实这里也可以把这些当作特殊得值(异常值)直接用填充或者删掉

由于np.log(0)==-inf,无法绘图,因此改用log(1+x)绘制分布bar,和教程里有出入,教程里用log绘图如下:(我画不出来,因为-inf会报错)

在这里插入图片描述

# log变换之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(1+Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

在这里插入图片描述

分离label即预测值

Y_train = Train_data['price']

#这个区别方式适用于没有直接label coding的数据

#这里不适用,需要人为根据实际含义来区分

#数字特征

numeric_features = Train_data.select_dtypes(include=[np.number])

numeric_features.columns

#类型特征

categorical_features = Train_data.select_dtypes(include=[np.object])

categorical_features.columns

numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]
categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode',]
# 特征nunique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征分布如下:")
    print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())

每个特征情况都会逐个如下所示:

在这里插入图片描述

test data显示同理

numeric_features.append('price')
numeric_features

在这里插入图片描述

price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
correlation

只截了一部分

在这里插入图片描述

查看相关性(强->弱)

print(correlation['price'].sort_values(ascending = False),'\n')

在这里插入图片描述

可视化correction

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

在这里插入图片描述

price完成历史使命,删掉

del price_numeric['price']
## 2) 查看几个特征得 偏度和峰值
for col in numeric_features:
    print('{:15}'.format(col), 
          'Skewness: {:05.2f}'.format(Train_data[col].skew()) , 
          '   ' ,
          'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())  
         )

在这里插入图片描述

1.2.1.3 *每个数字特征的分布可视化(易忽略)
## 3) 每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

只截了部分:

在这里插入图片描述

在这里插入图片描述

结论:匿名特征(v_*)相对分布均匀

1.2.1.4 *数字特征相互之间的关系可视化(易忽略)
## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()
1.2.1.5 *多变量互相回归关系可视化(易忽略)
## 5) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)
v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)
v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)
power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)
v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)
v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)
v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)
v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)
v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)
v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

1.2.2 类别特征分析(会画,不会利用结果)

对类别特征查看unique分布

.value_counts()
## 1) unique分布
for fea in categorical_features:
    print(Train_data[fea].nunique())
categorical_features
1.2.2.1 箱形图可视化
## 2) 类别特征箱形图可视化
# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']
for c in categorical_features:
    Train_data[c] = Train_data[c].astype('category')
    if Train_data[c].isnull().any():
        Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
        Train_data[c] = Train_data[c].fillna('MISSING')
def boxplot(x, y, **kwargs):
    sns.boxplot(x=x, y=y)
    x=plt.xticks(rotation=90)
f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")
Train_data.columns
1.2.2.2 小提琴图可视化
## 3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
    sns.violinplot(x=catg, y=target, data=Train_data)
    plt.show()
categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']

1.2.2.3 柱形图可视化类别

## 4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):
    sns.barplot(x=x, y=y)
    x=plt.xticks(rotation=90)
f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")

1.2.2.4 特征的每个类别频数可视化(count_plot)

##  5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x,  **kwargs):
    sns.countplot(x=x)
    x=plt.xticks(rotation=90)
f = pd.melt(Train_data,  value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

2. *用pandas_profiling生成数据报告(新技能)

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")

3. 小结

本次笔记虽然针对样本量较少的情况,但仍有一些可贵的思路:

a. 通过检查nan缺失情况,确定需要进一步处理的特征:

填充(填充方式是什么,均值填充,0填充,众数填充等);

舍去;

先做样本分类用不同的特征模型去预测

b. 通过分布,进行异常检测

分析特征异常的label是否异常(或者偏离均值较远或者事特殊符号);

异常值是否应该剔除,还是用正常值填充,等。

c. 通过对laebl作图,分析标签的分布情况

d. 通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性

到此这篇关于Datawhale练习的文章就介绍到这了,更多相关python预测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章,希望大家以后多多支持脚本之家!

相关文章

  • Django表单外键选项初始化的问题及解决方法

    Django表单外键选项初始化的问题及解决方法

    这篇文章主要介绍了Django表单外键选项初始化的问题及解决方法,需本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,要的朋友可以参考下
    2021-04-04
  • Python实现windows下模拟按键和鼠标点击的方法

    Python实现windows下模拟按键和鼠标点击的方法

    这篇文章主要介绍了Python实现windows下模拟按键和鼠标点击的方法,涉及Python模拟实现鼠标及键盘事件的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • win系统下为Python3.5安装flask-mongoengine 库

    win系统下为Python3.5安装flask-mongoengine 库

    MongoEngine 是一个用来操作 MongoDB 的 ORM 框架,如果你不知道什么是 ORM,可以参考 Flask-SQLAlchemy 一节。在 Flask 中,我们可以直接使用 MongoEngine,也可使用 Flask-MongoEngine ,它使得在 Flask 中使用 MongoEngine 变得更加简单。
    2016-12-12
  • OpenCV+Python几何变换的实现示例

    OpenCV+Python几何变换的实现示例

    这篇文章主要介绍了OpenCV+Python几何变换的实现示例,图像的几何变换是指将一幅图像映射到另一幅图像内。有缩放、翻转、仿射变换、透视、重映射等操作。感兴趣的可以了解一下
    2021-03-03
  • 如何在Python 中使用 Luhn 算法验证数字

    如何在Python 中使用 Luhn 算法验证数字

    Luhn 算法验证器有助于检查合法数字并将其与不正确或拼写错误的输入分开,这篇文章主要介绍了在Python中使用Luhn算法验证数字,需要的朋友可以参考下
    2023-06-06
  • linux系统使用python获取cpu信息脚本分享

    linux系统使用python获取cpu信息脚本分享

    这篇文章主要介绍了linux系统使用python获取cpu信息脚本,大家参考使用吧
    2014-01-01
  • pandas round方法保留两位小数的设置实现

    pandas round方法保留两位小数的设置实现

    本文主要介绍了pandas round方法保留两位小数的设置实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • 关于Keras模型可视化教程及关键问题的解决

    关于Keras模型可视化教程及关键问题的解决

    今天小编就为大家分享一篇关于Keras模型可视化教程及关键问题的解决,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python实现给文件添加内容及得到文件信息的方法

    Python实现给文件添加内容及得到文件信息的方法

    这篇文章主要介绍了Python实现给文件添加内容及得到文件信息的方法,可实现从文件开头添加内容的功能,需要的朋友可以参考下
    2015-05-05
  • Python numpy 模块介绍

    Python numpy 模块介绍

    这篇文章主要介绍了Python numpy 模块,在motplotlib的学习过程中,我们使用最多的就是numpy模块。下面我们将使用numpy进行创建数组、切片、索引、广播等功能实操,需要的朋友可以参考一下
    2022-01-01

最新评论