python爬虫之爬取谷歌趋势数据
更新时间:2021年04月21日 11:54:27 作者:qq_42052864
这篇文章主要介绍了python爬虫之爬取谷歌趋势数据,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有非常好的帮助,需要的朋友可以参考下
一、前言
爬取谷歌趋势数据需要科学上网~
二、思路
谷歌数据的爬取很简单,就是代码有点长。主要分下面几个就行了
爬取的三个界面返回的都是json数据。主要获取对应的token值和req,然后构造url请求数据就行
token值和req值都在这个链接的返回数据里。解析后得到token和req就行
socks5代理不太懂,抄网上的作业,假如了当前程序的全局代理后就可以跑了。全部代码如下
import socket import socks import requests import json import pandas as pd import logging #加入socks5代理后,可以获得当前程序的全局代理 socks.set_default_proxy(socks.SOCKS5,"127.0.0.1",1080) socket.socket = socks.socksocket #加入以下代码,否则会出现InsecureRequestWarning警告,虽然不影响使用,但看着糟心 # 捕捉警告 logging.captureWarnings(True) # 或者加入以下代码,忽略requests证书警告 # from requests.packages.urllib3.exceptions import InsecureRequestWarning # requests.packages.urllib3.disable_warnings(InsecureRequestWarning) # 将三个页面获得的数据存为DataFrame time_trends = pd.DataFrame() related_topic = pd.DataFrame() related_search = pd.DataFrame() #填入自己打开网页的请求头 headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36', 'x-client-data': 'CJa2yQEIorbJAQjEtskBCKmdygEI+MfKAQjM3soBCLKaywEI45zLAQioncsBGOGaywE=Decoded:message ClientVariations {// Active client experiment variation IDs.repeated int32 variation_id = [3300118, 3300130, 3300164, 3313321, 3318776, 3321676, 3329330, 3329635, 3329704];// Active client experiment variation IDs that trigger server-side behavior.repeated int32 trigger_variation_id = [3329377];}', 'referer': 'https://trends.google.com/trends/explore', 'cookie': '__utmc=10102256; __utmz=10102256.1617948191.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utma=10102256.889828344.1617948191.1617948191.1617956555.3; __utmt=1; __utmb=10102256.5.9.1617956603932; SID=8AfEx31goq255ga6Ldt9ljEVZ5xQ7fYTAdzCK3DgEYp2s6MOxeKc__hQ90tTtn0W-6AVoQ.; __Secure-3PSID=8AfEx31goq255ga6Ldt9ljEVZ5xQ7fYTAdzCK3DgEYp2s6MOLU4HYHzyoAXIvtAhfF_WNg.; HSID=AELT1m_DoHJY-r6SW; SSID=AJSlRt0T7ngXXMtqv; APISID=3Nt6oALGV8kSym2M/A2QeNBMtb9P7VcIwV; SAPISID=iAA0fu76JZezPfK4/Apws7zK1y-o74b2YD; __Secure-3PAPISID=iAA0fu76JZezPfK4/Apws7zK1y-o74b2YD; 1P_JAR=2021-04-06-06; SEARCH_SAMESITE=CgQIo5IB; NID=213=oYQE35gIVD2DrxbpY7NdAQsAEyg-If7Jh_nBdSKTkvmtgaVV7tYeSQNq_636cysbsajJP3_dKfr95w51ywK-dxVYhzPP4Zll9JndBYY98vd_XegGoeLEevpxIhNxUAv6H24OVt_edoGFkSjTpWKn4QAoIoerHCViyvozrvGF7m4scupppmxN-h9dwm1nrs15I3b_E-ifLq0lgd9s7QrgA-FRuaDeyuXN8t1K7l_DMTB1jkE5ED_dC-_QAO7DDw; SIDCC=AJi4QfFdMiK_qV41ViVJf0wWmtOu8yUVSQc_UEvemoaQwTGI9W0w2XwwkMCufVcYIS5ogRSkq5w; __Secure-3PSIDCC=AJi4QfEmB-gnzZLHWR4p1EmOfS2dhSz9zWSGNGOozrY2udFk4KwVmVo_srZdZrmdy7h_mwLSwQ' } # 获取需要的三个界面的req值和token值 def get_token_req(keyword): url = 'https://trends.google.com/trends/api/explore?hl=zh-CN&tz=-480&req={{"comparisonItem":[{{"keyword":"{}","geo":"US","time":"today 12-m"}}],"category":0,"property":""}}&tz=-480'.format( keyword) html = requests.get(url, headers=headers, verify=False).text data = json.loads(html[5:]) req_1 = data['widgets'][0]['request'] token_1 = data['widgets'][0]['token'] req_2 = data['widgets'][2]['request'] token_2 = data['widgets'][2]['token'] req_3 = data['widgets'][3]['request'] token_3 = data['widgets'][3]['token'] result = {'req_1': req_1, 'token_1': token_1, 'req_2': req_2, 'token_2': token_2, 'req_3': req_3, 'token_3': token_3} return result # 请求三个界面的数据,返回的是json数据,所以数据不用解析,完美 def get_info(keyword): content = [] keyword = keyword result = get_token_req(keyword) #第一个界面 req_1 = result['req_1'] token_1 = result['token_1'] url_1 = "https://trends.google.com/trends/api/widgetdata/multiline?hl=zh-CN&tz=-480&req={}&token={}&tz=-480".format( req_1, token_1) r_1 = requests.get(url_1, headers=headers, verify=False) if r_1.status_code == 200: try: content_1 = r_1.content content_1 = json.loads(content_1.decode('unicode_escape')[6:])['default']['timelineData'] result_1 = pd.json_normalize(content_1) result_1['value'] = result_1['value'].map(lambda x: x[0]) result_1['keyword'] = keyword except Exception as e: print(e) result_1 = None else: print(r_1.status_code) #第二个界面 req_2 = result['req_2'] token_2 = result['token_2'] url_2 = 'https://trends.google.com/trends/api/widgetdata/relatedsearches?hl=zh-CN&tz=-480&req={}&token={}'.format( req_2, token_2) r_2 = requests.get(url_2, headers=headers, verify=False) if r_2.status_code == 200: try: content_2 = r_2.content content_2 = json.loads(content_2.decode('unicode_escape')[6:])['default']['rankedList'][1]['rankedKeyword'] result_2 = pd.json_normalize(content_2) result_2['link'] = "https://trends.google.com" + result_2['link'] result_2['keyword'] = keyword except Exception as e: print(e) result_2 = None else: print(r_2.status_code) #第三个界面 req_3 = result['req_3'] token_3 = result['token_3'] url_3 = 'https://trends.google.com/trends/api/widgetdata/relatedsearches?hl=zh-CN&tz=-480&req={}&token={}'.format( req_3, token_3) r_3 = requests.get(url_3, headers=headers, verify=False) if r_3.status_code == 200: try: content_3 = r_3.content content_3 = json.loads(content_3.decode('unicode_escape')[6:])['default']['rankedList'][1]['rankedKeyword'] result_3 = pd.json_normalize(content_3) result_3['link'] = "https://trends.google.com" + result_3['link'] result_3['keyword'] = keyword except Exception as e: print(e) result_3 = None else: print(r_3.status_code) content = [result_1, result_2, result_3] return content def main(): global time_trends,related_search,related_topic with open(r'C:\Users\Desktop\words.txt','r',encoding = 'utf-8') as f: words = f.readlines() for keyword in words: keyword = keyword.strip() data_all = get_info(keyword) time_trends = pd.concat([time_trends,data_all[0]],sort = False) related_topic = pd.concat([related_topic,data_all[1]],sort = False) related_search = pd.concat([related_search,data_all[2]],sort = False) if __name__ == "__main__": main()
到此这篇关于python爬虫之爬取谷歌趋势数据的文章就介绍到这了,更多相关python爬取谷歌趋势内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python 实现读取一个excel多个sheet表并合并的方法
今天小编就为大家分享一篇python 实现读取一个excel多个sheet表并合并的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-02-02使用pycharm将自己项目代码上传github(小白教程)
github是一个代码托管平台,本文主要介绍了使用pycharm将自己项目代码上传github,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2021-11-11
最新评论