python爬虫之爬取谷歌趋势数据

 更新时间:2021年04月21日 11:54:27   作者:qq_42052864  
这篇文章主要介绍了python爬虫之爬取谷歌趋势数据,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有非常好的帮助,需要的朋友可以参考下

一、前言 

爬取谷歌趋势数据需要科学上网~

二、思路

谷歌数据的爬取很简单,就是代码有点长。主要分下面几个就行了

爬取的三个界面返回的都是json数据。主要获取对应的token值和req,然后构造url请求数据就行

在这里插入图片描述在这里插入图片描述

token值和req值都在这个链接的返回数据里。解析后得到token和req就行

在这里插入图片描述

socks5代理不太懂,抄网上的作业,假如了当前程序的全局代理后就可以跑了。全部代码如下

import socket
import socks
import requests
import json
import pandas as pd
import logging

#加入socks5代理后,可以获得当前程序的全局代理
socks.set_default_proxy(socks.SOCKS5,"127.0.0.1",1080)
socket.socket = socks.socksocket

#加入以下代码,否则会出现InsecureRequestWarning警告,虽然不影响使用,但看着糟心
# 捕捉警告
logging.captureWarnings(True)
# 或者加入以下代码,忽略requests证书警告
# from requests.packages.urllib3.exceptions import InsecureRequestWarning
# requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

# 将三个页面获得的数据存为DataFrame
time_trends = pd.DataFrame()
related_topic = pd.DataFrame()
related_search = pd.DataFrame()

#填入自己打开网页的请求头
headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36',
    'x-client-data': 'CJa2yQEIorbJAQjEtskBCKmdygEI+MfKAQjM3soBCLKaywEI45zLAQioncsBGOGaywE=Decoded:message ClientVariations {// Active client experiment variation IDs.repeated int32 variation_id = [3300118, 3300130, 3300164, 3313321, 3318776, 3321676, 3329330, 3329635, 3329704];// Active client experiment variation IDs that trigger server-side behavior.repeated int32 trigger_variation_id = [3329377];}',
    'referer': 'https://trends.google.com/trends/explore',
    'cookie': '__utmc=10102256; __utmz=10102256.1617948191.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utma=10102256.889828344.1617948191.1617948191.1617956555.3; __utmt=1; __utmb=10102256.5.9.1617956603932; SID=8AfEx31goq255ga6Ldt9ljEVZ5xQ7fYTAdzCK3DgEYp2s6MOxeKc__hQ90tTtn0W-6AVoQ.; __Secure-3PSID=8AfEx31goq255ga6Ldt9ljEVZ5xQ7fYTAdzCK3DgEYp2s6MOLU4HYHzyoAXIvtAhfF_WNg.; HSID=AELT1m_DoHJY-r6SW; SSID=AJSlRt0T7ngXXMtqv; APISID=3Nt6oALGV8kSym2M/A2QeNBMtb9P7VcIwV; SAPISID=iAA0fu76JZezPfK4/Apws7zK1y-o74b2YD; __Secure-3PAPISID=iAA0fu76JZezPfK4/Apws7zK1y-o74b2YD; 1P_JAR=2021-04-06-06; SEARCH_SAMESITE=CgQIo5IB; NID=213=oYQE35gIVD2DrxbpY7NdAQsAEyg-If7Jh_nBdSKTkvmtgaVV7tYeSQNq_636cysbsajJP3_dKfr95w51ywK-dxVYhzPP4Zll9JndBYY98vd_XegGoeLEevpxIhNxUAv6H24OVt_edoGFkSjTpWKn4QAoIoerHCViyvozrvGF7m4scupppmxN-h9dwm1nrs15I3b_E-ifLq0lgd9s7QrgA-FRuaDeyuXN8t1K7l_DMTB1jkE5ED_dC-_QAO7DDw; SIDCC=AJi4QfFdMiK_qV41ViVJf0wWmtOu8yUVSQc_UEvemoaQwTGI9W0w2XwwkMCufVcYIS5ogRSkq5w; __Secure-3PSIDCC=AJi4QfEmB-gnzZLHWR4p1EmOfS2dhSz9zWSGNGOozrY2udFk4KwVmVo_srZdZrmdy7h_mwLSwQ'
}


# 获取需要的三个界面的req值和token值
def get_token_req(keyword):
    url = 'https://trends.google.com/trends/api/explore?hl=zh-CN&tz=-480&req={{"comparisonItem":[{{"keyword":"{}","geo":"US","time":"today 12-m"}}],"category":0,"property":""}}&tz=-480'.format(
        keyword)
    html = requests.get(url, headers=headers, verify=False).text
    data = json.loads(html[5:])

    req_1 = data['widgets'][0]['request']
    token_1 = data['widgets'][0]['token']

    req_2 = data['widgets'][2]['request']
    token_2 = data['widgets'][2]['token']

    req_3 = data['widgets'][3]['request']
    token_3 = data['widgets'][3]['token']

    result = {'req_1': req_1, 'token_1': token_1, 'req_2': req_2, 'token_2': token_2, 'req_3': req_3,
              'token_3': token_3}
    return result


# 请求三个界面的数据,返回的是json数据,所以数据不用解析,完美
def get_info(keyword):
    content = []
    keyword = keyword
    result = get_token_req(keyword)

    #第一个界面
    req_1 = result['req_1']
    token_1 = result['token_1']
    url_1 = "https://trends.google.com/trends/api/widgetdata/multiline?hl=zh-CN&tz=-480&req={}&token={}&tz=-480".format(
        req_1, token_1)
    r_1 = requests.get(url_1, headers=headers, verify=False)
    if r_1.status_code == 200:
        try:
            content_1 = r_1.content
            content_1 = json.loads(content_1.decode('unicode_escape')[6:])['default']['timelineData']
            result_1 = pd.json_normalize(content_1)
            result_1['value'] = result_1['value'].map(lambda x: x[0])
            result_1['keyword'] = keyword
        except Exception as e:
            print(e)
            result_1 = None
    else:
        print(r_1.status_code)

    #第二个界面
    req_2 = result['req_2']
    token_2 = result['token_2']
    url_2 = 'https://trends.google.com/trends/api/widgetdata/relatedsearches?hl=zh-CN&tz=-480&req={}&token={}'.format(
        req_2, token_2)
    r_2 = requests.get(url_2, headers=headers, verify=False)
    if r_2.status_code == 200:
        try:
            content_2 = r_2.content
            content_2 = json.loads(content_2.decode('unicode_escape')[6:])['default']['rankedList'][1]['rankedKeyword']
            result_2 = pd.json_normalize(content_2)
            result_2['link'] = "https://trends.google.com" + result_2['link']
            result_2['keyword'] = keyword
        except Exception as e:
            print(e)
            result_2 = None
    else:
        print(r_2.status_code)

    #第三个界面
    req_3 = result['req_3']
    token_3 = result['token_3']
    url_3 = 'https://trends.google.com/trends/api/widgetdata/relatedsearches?hl=zh-CN&tz=-480&req={}&token={}'.format(
        req_3, token_3)
    r_3 = requests.get(url_3, headers=headers, verify=False)
    if r_3.status_code == 200:
        try:
            content_3 = r_3.content
            content_3 = json.loads(content_3.decode('unicode_escape')[6:])['default']['rankedList'][1]['rankedKeyword']
            result_3 = pd.json_normalize(content_3)
            result_3['link'] = "https://trends.google.com" + result_3['link']
            result_3['keyword'] = keyword
        except Exception as e:
            print(e)
            result_3 = None
    else:
        print(r_3.status_code)

    content = [result_1, result_2, result_3]

    return content

def main():
    global time_trends,related_search,related_topic
    with open(r'C:\Users\Desktop\words.txt','r',encoding = 'utf-8') as f:
        words = f.readlines()
    for keyword in words:
        keyword = keyword.strip()
        data_all = get_info(keyword)
        time_trends = pd.concat([time_trends,data_all[0]],sort = False)
        related_topic = pd.concat([related_topic,data_all[1]],sort = False)
        related_search = pd.concat([related_search,data_all[2]],sort = False)

if __name__ == "__main__":
    main()

到此这篇关于python爬虫之爬取谷歌趋势数据的文章就介绍到这了,更多相关python爬取谷歌趋势内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在Django的session中使用User对象的方法

    在Django的session中使用User对象的方法

    这篇文章主要介绍了在Django的session中使用User对象的方法,Django是众Python web开发框架中人气最高的一个,需要的朋友可以参考下
    2015-07-07
  • Python requests发送post请求的一些疑点

    Python requests发送post请求的一些疑点

    在Python爬虫中,使用requests发送请求,访问指定网站,是常见的做法,这篇文章主要介绍了Python requests发送post请求的一些疑点,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-05-05
  • python 实现读取一个excel多个sheet表并合并的方法

    python 实现读取一个excel多个sheet表并合并的方法

    今天小编就为大家分享一篇python 实现读取一个excel多个sheet表并合并的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • python将依赖和源码打包在一起的方法

    python将依赖和源码打包在一起的方法

    Python 项目在不同环境中部署时,经常会遇到安装依赖的问题,为了避免多个环境引起的重复劳动,可以将依赖和源码打包在一起交付,本文就给大家详解介绍了将依赖和源码打包在一起的方法,需要的朋友可以参考下
    2023-06-06
  • 让python 3支持mysqldb的解决方法

    让python 3支持mysqldb的解决方法

    这篇文章主要介绍了关于让python 3支持mysqldb的解决方法,文中给出解决的示例代码,相信对大家具有一定的参考价值,有需要的朋友可以一起来看看。
    2017-02-02
  • 聊聊python中的load、loads实现反序列化的问题

    聊聊python中的load、loads实现反序列化的问题

    在python自动化中,我们传递一些参数是需要从文件中读取过来的,读取过来的字典并非python对象数据类型而是string类型。本文给大家分享python中的load、loads实现反序列化的问题,感兴趣的朋友一起看看吧
    2021-10-10
  • 使用pycharm将自己项目代码上传github(小白教程)

    使用pycharm将自己项目代码上传github(小白教程)

    github是一个代码托管平台,本文主要介绍了使用pycharm将自己项目代码上传github,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • python打印当前文件的绝对路径并解决打印为空的问题

    python打印当前文件的绝对路径并解决打印为空的问题

    这篇文章主要介绍了python打印当前文件的绝对路径并解决打印为空的问题,文中补充介绍了python中对文件路径的获取方法,需要的朋友可以参考下
    2023-03-03
  • python实现根据月份和日期得到星座的方法

    python实现根据月份和日期得到星座的方法

    这篇文章主要介绍了python实现根据月份和日期得到星座的方法,涉及Python操作字符串及数组的技巧,非常具有实用价值,需要的朋友可以参考下
    2015-03-03
  • python实现简单日志记录库glog的使用

    python实现简单日志记录库glog的使用

    这篇文章主要介绍了python实现简单日志记录库glog的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12

最新评论