numpy数据类型dtype转换实现

 更新时间:2021年04月23日 14:15:35   作者:罗兵  
这篇文章主要介绍了numpy数据类型dtype转换实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

这篇文章我们玩玩numpy的数值数据类型转换

导入numpy

>>> import numpy as np

一、随便玩玩

生成一个浮点数组

>>> a = np.random.random(4)

看看信息

>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)

改变dtype,发现数组长度翻倍!

>>> a.dtype = 'float32'
>>> a
array([  3.65532693e+20,   1.43907535e+00,  -3.31994873e-25,
         1.75549972e+00,  -2.75686653e+14,   1.78122652e+00,
        -1.03207532e-19,   1.58760118e+00], dtype=float32)
>>> a.shape
(8,)

改变dtype,数组长度再次翻倍!

>>> a.dtype = 'float16'
>>> a
array([ -9.58442688e-05,   7.19000000e+02,   2.38159180e-01,
         1.92968750e+00,              nan,  -1.66034698e-03,
        -2.63427734e-01,   1.96875000e+00,  -1.07519531e+00,
        -1.19625000e+02,              nan,   1.97167969e+00,
        -1.60156250e-01,  -7.76290894e-03,   4.07226562e-01,
         1.94824219e+00], dtype=float16)
>>> a.shape
(16,)

改变dtype='float',发现默认就是float64,长度也变回最初的4

>>> a.dtype = 'float'
>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.shape
(4,)
>>> a.dtype
dtype('float64')

把a变为整数,观察其信息

>>> a.dtype = 'int64'
>>> a
array([4591476579734816328, 4602876970018897584, 4603803876586077261,
       4596827787908854048], dtype=int64)
>>> a.shape
(4,)

改变dtype,发现数组长度翻倍!

>>> a.dtype = 'int32'
>>> a
array([ 1637779016,  1069036447, -1764917584,  1071690807,  -679822259,
        1071906619, -1611419360,  1070282372])
>>> a.shape
(8,)

改变dtype,发现数组长度再次翻倍!

>>> a.dtype = 'int16'
>>> a
array([-31160,  24990,  13215,  16312,  32432, -26931, -19401,  16352,
       -17331, -10374,   -197,  16355, -20192, -24589,  13956,  16331], dtype=int16)
>>> a.shape
(16,)

改变dtype,发现数组长度再次翻倍!

>>> a.dtype = 'int8'
>>> a
array([  72, -122,  -98,   97,  -97,   51,  -72,   63,  -80,  126,  -51,
       -106,   55,  -76,  -32,   63,   77,  -68,  122,  -41,   59,   -1,
        -29,   63,   32,  -79,  -13,  -97, -124,   54,  -53,   63], dtype=int8)
>>> a.shape
(32,)

改变dtype,发现整数默认int32!

>>> a.dtype = 'int'
>>> a.dtype
dtype('int32')
>>> a
array([ 1637779016,  1069036447, -1764917584,  1071690807,  -679822259,
        1071906619, -1611419360,  1070282372])
>>> a.shape
(8,)

二、换一种玩法

很多时候我们用numpy从文本文件读取数据作为numpy的数组,默认的dtype是float64。
但是有些场合我们希望有些数据列作为整数。如果直接改dtype='int'的话,就会出错!原因如上,数组长度翻倍了!!!

下面的场景假设我们得到了导入的数据。我们的本意是希望它们是整数,但实际上是却是浮点数(float64)

>>> b = np.array([1., 2., 3., 4.])
>>> b.dtype
dtype('float64')

用 astype(int) 得到整数,并且不改变数组长度

>>> c = b.astype(int)
>>> c
array([1, 2, 3, 4])
>>> c.shape
(8,)
>>> c.dtype
dtype('int32')

如果直接改变b的dtype的话,b的长度翻倍了,这不是我们想要的(当然如果你想的话)

>>> b
array([ 1.,  2.,  3.,  4.])

>>> b.dtype = 'int'
>>> b.dtype
dtype('int32')
>>> b
array([         0, 1072693248,          0, 1073741824,          0,
       1074266112,          0, 1074790400])
>>> b.shape
(8,)

三、结论

numpy中的数据类型转换,不能直接改原数据的dtype!  只能用函数astype()。

到此这篇关于numpy数据类型dtype转换实现的文章就介绍到这了,更多相关numpy dtype转换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python计算多幅图像栅格值的平均值

    Python计算多幅图像栅格值的平均值

    这篇文章主要为大家详细介绍了Python计算多幅图像栅格值的平均值,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • python实现统计文本中单词出现的频率详解

    python实现统计文本中单词出现的频率详解

    这篇文章主要介绍了python统计文本中单词出现频率,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • python中format函数如何使用

    python中format函数如何使用

    在本篇内容里小编给大家整理的是一篇关于python的format函数用法以及相关实例,需要的朋友们学习下。
    2020-06-06
  • python opencv 图像拼接的实现方法

    python opencv 图像拼接的实现方法

    高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图。这篇文章主要介绍了python opencv 图像拼接,需要的朋友可以参考下
    2019-06-06
  • Jupyter Notebook/VSCode导出PDF中文不显示的解决

    Jupyter Notebook/VSCode导出PDF中文不显示的解决

    这篇文章主要介绍了Jupyter Notebook/VSCode导出PDF中文不显示的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • python 网络编程常用代码段

    python 网络编程常用代码段

    这篇文章主要介绍了python 网络编程常用代码段,需要的朋友可以参考下
    2016-08-08
  • python pandas库的安装和创建

    python pandas库的安装和创建

    这篇文章主要介绍了python pandas库的安装和创建,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-01-01
  • Django框架中数据的连锁查询和限制返回数据的方法

    Django框架中数据的连锁查询和限制返回数据的方法

    这篇文章主要介绍了Django框架中数据的连锁查询和限制返回数据的方法,Django是Python重多高人气框架中最为著名的一个,需要的朋友可以参考下
    2015-07-07
  • Python中用append()连接后多出一列Unnamed的解决

    Python中用append()连接后多出一列Unnamed的解决

    Python中用append()连接后多出一列Unnamed的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • Python中如何检查字符串是否包含列表中的元素

    Python中如何检查字符串是否包含列表中的元素

    在数据预处理或纠错的过程中可能会用到对列表中是否含有我们需要的字符串的判断,下面这篇文章主要给大家介绍了关于Python中如何检查字符串是否包含列表中的元素的相关资料,需要的朋友可以参考下
    2023-06-06

最新评论