Python深度学习之使用Pytorch搭建ShuffleNetv2
更新时间:2021年05月06日 09:00:15 作者:I
这篇文章主要介绍了Python深度学习之使用Pytorch搭建ShuffleNetv2,文中有非常详细的图文示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
一、model.py
1.1 Channel Shuffle
def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width] x = x.view(batch_size, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batch_size, -1, height, width) return x
1.2 block
class InvertedResidual(nn.Module): def __init__(self, input_c: int, output_c: int, stride: int): super(InvertedResidual, self).__init__() if stride not in [1, 2]: raise ValueError("illegal stride value.") self.stride = stride assert output_c % 2 == 0 branch_features = output_c // 2 # 当stride为1时,input_channel应该是branch_features的两倍 # python中 '<<' 是位运算,可理解为计算×2的快速方法 assert (self.stride != 1) or (input_c == branch_features << 1) if self.stride == 2: self.branch1 = nn.Sequential( self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(input_c), nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) @staticmethod def depthwise_conv(input_c: int, output_c: int, kernel_s: int, stride: int = 1, padding: int = 0, bias: bool = False) -> nn.Conv2d: return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s, stride=stride, padding=padding, bias=bias, groups=input_c) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out
1.3 shufflenet v2
class ShuffleNetV2(nn.Module): def __init__(self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual): super(ShuffleNetV2, self).__init__() if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels # input RGB image input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = ["stage{}".format(i) for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # global pool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x)
二、train.py
到此这篇关于Python深度学习之使用Pytorch搭建ShuffleNetv2的文章就介绍到这了,更多相关Python用Pytorch搭建ShuffleNetv2内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:
相关文章
Python 使用PyQt5 完成选择文件或目录的对话框方法
今天小编就为大家分享一篇Python 使用PyQt5 完成选择文件或目录的对话框方法。具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-06-06jupyter notebook 使用过程中python莫名崩溃的原因及解决方式
这篇文章主要介绍了jupyter notebook 使用过程中python莫名崩溃的原因及解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04Tkinter canvas的画布参数,删除组件,添加垂直滚动条详解
这篇文章主要介绍了python tkinter 画布参数,删除组件,添加垂直滚动条使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2021-10-10Pearson相关系数和Spearman相关系数的区别及说明
这篇文章主要介绍了Pearson相关系数和Spearman相关系数的区别及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2023-05-05
最新评论