R语言关于多重回归知识点总结

 更新时间:2021年05月07日 08:23:12   作者:w3cschool  
在本篇内容里小编给大家整理了一篇关于R语言关于多重回归知识点总结,有兴趣的朋友们可以学习下。

多元回归是线性回归到两个以上变量之间的关系的延伸。 在简单线性关系中,我们有一个预测变量和一个响应变量,但在多元回归中,我们有多个预测变量和一个响应变量。

多元回归的一般数学方程为

y = a + b1x1 + b2x2 +...bnxn

以下是所使用的参数的描述 

  • y是响应变量。
  • a,b1,b2 ... bn是系数。
  • x1,x2,... xn是预测变量。

我们使用R语言中的lm()函数创建回归模型。模型使用输入数据确定系数的值。 接下来,我们可以使用这些系数来预测给定的一组预测变量的响应变量的值。

lm()函数

此函数创建预测变量和响应变量之间的关系模型。

语法

lm()函数在多元回归中的基本语法是

lm(y ~ x1+x2+x3...,data)

以下是所使用的参数的描述 

  • 公式是表示响应变量和预测变量之间的关系的符号。
  • 数据是应用公式的向量。

输入数据

考虑在R语言环境中可用的数据集“mtcars”。 它给出了每加仑里程(mpg),气缸排量(“disp”),马力(“hp”),汽车重量(“wt”)和一些其他参数的不同汽车模型之间的比较。

模型的目标是建立“mpg”作为响应变量与“disp”,“hp”和“wt”作为预测变量之间的关系。 为此,我们从mtcars数据集中创建这些变量的子集。

input <- mtcars[,c("mpg","disp","hp","wt")]
print(head(input))

当我们执行上面的代码,它产生以下结果

                   mpg   disp   hp    wt
Mazda RX4          21.0  160    110   2.620
Mazda RX4 Wag      21.0  160    110   2.875
Datsun 710         22.8  108     93   2.320
Hornet 4 Drive     21.4  258    110   3.215
Hornet Sportabout  18.7  360    175   3.440
Valiant            18.1  225    105   3.460

创建关系模型并获取系数

input <- mtcars[,c("mpg","disp","hp","wt")]

# Create the relationship model.
model <- lm(mpg~disp+hp+wt, data = input)

# Show the model.
print(model)

# Get the Intercept and coefficients as vector elements.
cat("# # # # The Coefficient Values # # # ","
")

a <- coef(model)[1]
print(a)

Xdisp <- coef(model)[2]
Xhp <- coef(model)[3]
Xwt <- coef(model)[4]

print(Xdisp)
print(Xhp)
print(Xwt)

当我们执行上面的代码,它产生以下结果

Call:
lm(formula = mpg ~ disp + hp + wt, data = input)

Coefficients:
(Intercept)         disp           hp           wt  
  37.105505     0.000937       0.031157   3.800891  

# # # # The Coefficient Values # # # 
(Intercept) 
   37.10551 
         disp 
-0.0009370091 
         hp 
-0.03115655 
       wt 
-3.800891 

创建回归模型的方程

基于上述截距和系数值,我们创建了数学方程。

Y = a+Xdisp.x1+Xhp.x2+Xwt.x3
or
Y = 37.15+(-0.000937)*x1+(-0.0311)*x2+(-3.8008)*x3

应用方程预测新值

当提供一组新的位移,马力和重量值时,我们可以使用上面创建的回归方程来预测里程数。
对于disp = 221,hp = 102和wt = 2.91的汽车,预测里程为

Y = 37.15+(-0.000937)*221+(-0.0311)*102+(-3.8008)*2.91 = 22.7104

到此这篇关于R语言关于多重回归知识点总结的文章就介绍到这了,更多相关R语言多重回归内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • R语言修改下载安装包install.package的默认存储路径的操作方法

    R语言修改下载安装包install.package的默认存储路径的操作方法

    这篇文章主要介绍了R语言修改下载安装包install.package的默认存储路径的操作方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • pycharm实现R语言运行环境安装配置的实现步骤

    pycharm实现R语言运行环境安装配置的实现步骤

    大多数人仍然使用RStudio进行R语言开发。与RStudio相比,PyCharm具有更多的优势,本文主要介绍了pycharm运行R语言脚本的实现步骤,文中通过图文介绍的非常详细,感兴趣的可以了解一下
    2023-10-10
  • R语言绘制维恩图ggvenn示例详解

    R语言绘制维恩图ggvenn示例详解

    这篇文章主要为大家介绍了R语言绘制维恩图ggvenn示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • R语言-如何将list转换为向量

    R语言-如何将list转换为向量

    这篇文章主要介绍了R语言-将list转换为向量的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言如何进行线性回归的拟合度详解

    R语言如何进行线性回归的拟合度详解

    这篇文章主要给大家介绍了关于R语言如何进行线性回归的拟合度的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • R语言读取excel数据的方法(两行命令)

    R语言读取excel数据的方法(两行命令)

    这篇文章主要介绍了R语言读取excel数据的方法(两行命令),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • R语言实现导出矩阵

    R语言实现导出矩阵

    这篇文章主要介绍了R语言实现导出矩阵,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言差异检验:非参数检验操作

    R语言差异检验:非参数检验操作

    这篇文章主要介绍了R语言差异检验:非参数检验操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言的历史介绍

    R语言的历史介绍

    在本篇内容里小编给大家介绍了关于R语言的历史内容,有兴趣学习的朋友可以阅读下。
    2021-03-03
  • R语言操作X轴日期实例讲解

    R语言操作X轴日期实例讲解

    这篇文章主要介绍了R语言操作X轴日期实例讲解,图文描述的很清楚,有感兴趣的同学可以研究下
    2021-03-03

最新评论