Java 实现LZ78压缩算法的示例代码
更新时间:2021年05月08日 10:54:30 作者:简简单单OnlineZuozuo
这篇文章主要介绍了Java 实现LZ78压缩算法的示例代码,代码简单易懂,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
LZ78 压缩算法的 Java 实现
1、压缩算法的实现
通过多路搜索树提高检索速度
package com.wretchant.lz78; import java.util.*; /** 多路英文单词查找树 */ class Trie { private TrieNode root; public Trie() { root = new TrieNode(); root.wordEnd = false; } public void insert(String word) { TrieNode node = root; for (int i = 0; i < word.length(); i++) { Character c = word.charAt(i); if (!node.childdren.containsKey(c)) { node.childdren.put(c, new TrieNode()); } node = node.childdren.get(c); } node.wordEnd = true; } public boolean search(String word) { TrieNode node = root; for (int i = 0; i < word.length(); i++) { Character c = word.charAt(i); if (!node.childdren.containsKey(c)) { return false; } node = node.childdren.get(c); } return node.wordEnd; } } class TrieNode { Map<Character, TrieNode> childdren; boolean wordEnd; public TrieNode() { childdren = new HashMap<Character, TrieNode>(); wordEnd = false; } } /** 编码表 */ class Output { private Integer index; private Character character; Output(Integer index, Character character) { this.index = index; this.character = character; } public Integer getIndex() { return index; } public Character getCharacter() { return character; } } class LZencode { @FunctionalInterface interface Encode { List<Output> encode(String message); } /** 构建多路搜索树 */ static Trie buildTree(Set<String> keys) { Trie trie = new Trie(); keys.forEach(trie::insert); return trie; } public static final Encode ENCODE = message -> { // 构建压缩后的编码表 List<Output> outputs = new ArrayList<>(); Map<String, Integer> treeDict = new HashMap<>(); int mLen = message.length(); int i = 0; while (i < mLen) { Set<String> keySet = treeDict.keySet(); // 生成多路搜索树 Trie trie = buildTree(keySet); char messageI = message.charAt(i); String messageIStr = String.valueOf(messageI); // 使用多路树进行搜索 if (!trie.search(messageIStr)) { outputs.add(new Output(0, messageI)); treeDict.put(messageIStr, treeDict.size() + 1); i++; } else if (i == mLen - 1) { outputs.add(new Output(treeDict.get(messageIStr), ' ')); i++; } else { for (int j = i + 1; j < mLen; j++) { String substring = message.substring(i, j + 1); String str = message.substring(i, j); // 使用多路树进行搜索 if (!trie.search(substring)) { outputs.add(new Output(treeDict.get(str), message.charAt(j))); treeDict.put(substring, treeDict.size() + 1); i = j + 1; break; } if (j == mLen - 1) { outputs.add(new Output(treeDict.get(substring), ' ')); i = j + 1; } } } } return outputs; }; }
2、解压缩算法的实现
package com.wretchant.lz78; import java.util.HashMap; import java.util.List; import java.util.Map; public class LZdecode { @FunctionalInterface interface Decode { /** @param outputs 编码表 @return 解码后的字符串 */ String decode(List<Output> outputs); } /** 根据编码表进行解码 */ public static final Decode DECODE = (List<Output> outputs) -> { StringBuilder unpacked = new StringBuilder(); Map<Integer, String> treeDict = new HashMap<>(); for (Output output : outputs) { Integer index = output.getIndex(); Character character = output.getCharacter(); if (index == 0) { unpacked.append(character); treeDict.put(treeDict.size() + 1, character.toString()); continue; } String term = "" + treeDict.get(index) + character; unpacked.append(term); treeDict.put(treeDict.size() + 1, term); } return unpacked.toString(); }; }
3、测试和使用
package com.wretchant.lz78; import java.io.InputStream; import java.util.List; import java.util.Scanner; import java.util.function.ToIntFunction; public class LZpack { public static final ToIntFunction<List<Output>> DICT_PRINT = outputs -> { outputs.forEach(output -> { System.out.println("index :" + output.getIndex() + " char :" + output.getCharacter()); }); return 1; }; public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.println("Please input text "); String input = scanner.nextLine(); LZencode.Encode encode = LZencode.ENCODE; List<Output> outputs = encode.encode(input); DICT_PRINT.applyAsInt(outputs); } }
测试结果如下
4、Python 版本的实现代码
def compress(message): tree_dict, m_len, i = {}, len(message), 0 while i < m_len: # case I if message[i] not in tree_dict.keys(): yield (0, message[i]) tree_dict[message[i]] = len(tree_dict) + 1 i += 1 # case III elif i == m_len - 1: yield (tree_dict.get(message[i]), '') i += 1 else: for j in range(i + 1, m_len): # case II if message[i:j + 1] not in tree_dict.keys(): yield (tree_dict.get(message[i:j]), message[j]) tree_dict[message[i:j + 1]] = len(tree_dict) + 1 i = j + 1 break # case III elif j == m_len - 1: yield (tree_dict.get(message[i:j + 1]), '') i = j + 1 def uncompress(packed): unpacked, tree_dict = '', {} for index, ch in packed: if index == 0: unpacked += ch tree_dict[len(tree_dict) + 1] = ch else: term = tree_dict.get(index) + ch unpacked += term tree_dict[len(tree_dict) + 1] = term return unpacked if __name__ == '__main__': messages = ['ABBCBCABABCAABCAAB', 'BABAABRRRA', 'AAAAAAAAA'] for m in messages: pack = compress(m) unpack = uncompress(pack) print(unpack == m)
到此这篇关于Java 实现LZ78压缩算法的文章就介绍到这了,更多相关Java LZ78压缩算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Spring模块详解之Spring ORM和Spring Transaction详解
Spring ORM 是 Spring 框架的模块之一,旨在简化与 JPA、Hibernate、JDO 等 ORM 工具的集成,通过提供统一的 API 和模板类,如 HibernateTemplate 和 JpaTemplate,Spring ORM 使开发者可以更便捷地执行数据库操作,感兴趣的朋友跟随小编一起看看吧2024-09-09有关ServletConfig与ServletContext的访问
下面小编就为大家带来一篇有关ServletConfig与ServletContext的访问。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧2017-01-01
最新评论