Pytorch实现全连接层的操作

 更新时间:2021年05月10日 09:37:20   作者:陈千鹤  
这篇文章主要介绍了pytorch实现简单全连接层的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

全连接神经网络(FC)

全连接神经网络是一种最基本的神经网络结构,英文为Full Connection,所以一般简称FC。

FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接。

以上一次的MNIST为例

import torch
import torch.utils.data
from torch import optim
from torchvision import datasets
from torchvision.transforms import transforms
import torch.nn.functional as F
batch_size = 200
learning_rate = 0.001
epochs = 20
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('mnistdata', train=True, download=False,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('mnistdata', train=False, download=False,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
w1, b1 = torch.randn(200, 784, requires_grad=True), torch.zeros(200, requires_grad=True)
w2, b2 = torch.randn(200, 200, requires_grad=True), torch.zeros(200, requires_grad=True)
w3, b3 = torch.randn(10, 200, requires_grad=True), torch.zeros(10, requires_grad=True)
torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)
def forward(x):
    x = x@w1.t() + b1
    x = F.relu(x)
    x = x@w2.t() + b2
    x = F.relu(x)
    x = x@w3.t() + b3
    x = F.relu(x)
    return x
optimizer = optim.Adam([w1, b1, w2, b2, w3, b3], lr=learning_rate)
criteon = torch.nn.CrossEntropyLoss()
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        logits = forward(data)
        loss = criteon(logits, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch : {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx*len(data), len(train_loader.dataset),
                100.*batch_idx/len(train_loader), loss.item()
            ))
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28*28)
        logits = forward(data)
        test_loss += criteon(logits, target).item()
        pred = logits.data.max(1)[1]
        correct += pred.eq(target.data).sum()
    test_loss /= len(test_loader.dataset)
    print('\nTest set : Averge loss: {:.4f}, Accurancy: {}/{}({:.3f}%)'.format(
        test_loss, correct, len(test_loader.dataset),
        100.*correct/len(test_loader.dataset)
        ))

我们将每个w和b都进行了定义,并且自己写了一个forward函数。如果我们采用了全连接层,那么整个代码也会更加简介明了。

首先,我们定义自己的网络结构的类:

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True)
        )
    def forward(self, x):
        x = self.model(x)
        return x

它继承于nn.Moudle,并且自己定义里整个网络结构。

其中inplace的作用是直接复用存储空间,减少新开辟存储空间。

除此之外,它可以直接进行运算,不需要手动定义参数和写出运算语句,更加简便。

同时我们还可以发现,它自动完成了初试化,不需要像之前一样再手动写一个初始化了。

区分nn.Relu和F.relu()

前者是一个类的接口,后者是一个函数式接口。

前者都是大写的,并且调用的的时候需要先实例化才能使用,而后者是小写的可以直接使用。

最重要的是后者的自由度更高,更适合做一些自己定义的操作。

完整代码

import torch
import torch.utils.data
from torch import optim, nn
from torchvision import datasets
from torchvision.transforms import transforms
import torch.nn.functional as F
batch_size = 200
learning_rate = 0.001
epochs = 20
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('mnistdata', train=True, download=False,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('mnistdata', train=False, download=False,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True)
        )
    def forward(self, x):
        x = self.model(x)
        return x
device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.to(device)
        logits = net(data)
        loss = criteon(logits, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch : {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx*len(data), len(train_loader.dataset),
                100.*batch_idx/len(train_loader), loss.item()
            ))
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.to(device)
        logits = net(data)
        test_loss += criteon(logits, target).item()
        pred = logits.data.max(1)[1]
        correct += pred.eq(target.data).sum()
    test_loss /= len(test_loader.dataset)
    print('\nTest set : Averge loss: {:.4f}, Accurancy: {}/{}({:.3f}%)'.format(
        test_loss, correct, len(test_loader.dataset),
        100.*correct/len(test_loader.dataset)
        ))

补充:pytorch 实现一个隐层的全连接神经网络

torch.nn 实现 模型的定义,网络层的定义,损失函数的定义。

import torch
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. Each Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)
# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')
learning_rate = 1e-4
for t in range(500):
    # Forward pass: compute predicted y by passing x to the model. Module objects
    # override the __call__ operator so you can call them like functions. When
    # doing so you pass a Tensor of input data to the Module and it produces
    # a Tensor of output data.
    y_pred = model(x)
    # Compute and print loss. We pass Tensors containing the predicted and true
    # values of y, and the loss function returns a Tensor containing the
    # loss.
    loss = loss_fn(y_pred, y)
    print(t, loss.item())
    # Zero the gradients before running the backward pass.
    model.zero_grad()
    # Backward pass: compute gradient of the loss with respect to all the learnable
    # parameters of the model. Internally, the parameters of each Module are stored
    # in Tensors with requires_grad=True, so this call will compute gradients for
    # all learnable parameters in the model.
    loss.backward()
    # Update the weights using gradient descent. Each parameter is a Tensor, so
    # we can access its gradients like we did before.
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

上面,我们使用parem= -= learning_rate* param.grad 手动更新参数。

使用torch.optim 自动优化参数。optim这个package提供了各种不同的模型优化方法,包括SGD+momentum, RMSProp, Adam等等。

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for t in range(500):
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • Python 项目转化为so文件实例

    Python 项目转化为so文件实例

    今天小编就为大家分享一篇Python 项目转化为so文件实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python将ip地址转换成整数的方法

    python将ip地址转换成整数的方法

    这篇文章主要介绍了python将ip地址转换成整数的方法,涉及Python针对IP地址的转换技巧,需要的朋友可以参考下
    2015-03-03
  • Python实现对比两个Excel数据内容并标记出不同

    Python实现对比两个Excel数据内容并标记出不同

    日常工作中需要对比两个Excel工作表中的数据差异是很不方便的,使用python来做就比较简单了!本文为大家介绍了python实现对比两个Excel的数据内容并标记出不同数据的示例代码,需要的可以参考一下
    2022-12-12
  • python 抓包保存为pcap文件并解析的实例

    python 抓包保存为pcap文件并解析的实例

    今天小编就为大家分享一篇python 抓包保存为pcap文件并解析的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python之os模块案例详解

    Python之os模块案例详解

    这篇文章主要介绍了Python之os模块案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-09-09
  • 利用Python破解摩斯密码

    利用Python破解摩斯密码

    摩尔斯电码( 又译为摩斯密码,英语:Morse code)是一种时通时断的信号代码,通过不同的排列顺序来表达不同的英文字母、数字和标点符号。本文将通过Python代码来实现破解摩斯密码,感兴趣的可以学习一下
    2022-02-02
  • 基于Pycharm加载多个项目过程图解

    基于Pycharm加载多个项目过程图解

    这篇文章主要介绍了基于Pycharm加载多个项目过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • python实现远程控制电脑

    python实现远程控制电脑

    这篇文章主要为大家详细介绍了python实现远程控制电脑,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05
  • TensorFlow人工智能学习创建数据实现示例详解

    TensorFlow人工智能学习创建数据实现示例详解

    这篇文章主要为大家介绍了TensorFlow人工智能学习创建数据实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2021-11-11
  • 详解python中Numpy的属性与创建矩阵

    详解python中Numpy的属性与创建矩阵

    这篇文章给大家分享了关于python中Numpy的属性与创建矩阵的相关知识点内容,有兴趣的朋友们可以学习参考下。
    2018-09-09

最新评论