详解Python牛顿插值法

 更新时间:2021年05月11日 08:37:14   作者:C-S=Cong  
这篇文章主要介绍了详解Python牛顿插值法,文中有非常详细的代码示例,对正在学习python的小伙伴们有很好地帮助,需要的朋友可以参考下

一、牛顿多项式

拉格朗日多项式的公式不具备递推性,每个多项式需要单独构造。但很多时候我们需要从若干个逼近多项式选择一个。这个时候我们就需要一个具有递推关系的方法来构造——牛顿多项式

在这里插入图片描述

这里的的a0,a1…等可以通过逐一带入点的值来求得。但是当项数多起来时,会发现式子变得很大,这个时候我们便要引入差商的概念(利用差分思想)具体见式子能更好理解

在这里插入图片描述
在这里插入图片描述

这里在编程实现中我们可以推出相应的差商推导方程

d(k,0)=y(k)
d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j))

二、例题

【问题描述】考虑[0,3]内的函数y=f(x)=cos(x)。利用多个(最多为6个)节点构造牛顿插值多项式。
【输入形式】在屏幕上依次输入在区间[0,3]内的一个值x*,构造插值多项式后求其P(x*)值,和多个节点的x坐标。
【输出形式】输出牛顿插值多项式系数向量,差商矩阵,P(x*)值(保留6位有效数字),和与真实值的绝对误差(使用科学计数法,保留小数点后6位有数字)。
【样例1输入】
0.8
0 0.5 1
【样例1输出】
-0.429726
-0.0299721
1
1 0 0
0.877583 -0.244835 0
0.540302 -0.674561 -0.429726
0.700998
4.291237e-03
【样例1说明】
输入:x为0.8,3个节点为(k, cos(k)),其中k = 0, 0.5, 1。
输出:
牛顿插值多项式系数向量,表示P2(x)=-0.429726x^2 - 0.0299721x + 1;
3行3列的差商矩阵;
当x
为0.8时,P2(0.8)值为0.700998
与真实值的绝对误差为:4.291237*10^(-3)
【评分标准】根据输入得到的输出准确

三、ACcode:

C++(后面还有python代码)

/*
 * @Author: csc
 * @Date: 2021-04-30 08:52:45
 * @LastEditTime: 2021-04-30 11:57:46
 * @LastEditors: Please set LastEditors
 * @Description: In User Settings Edit
 * @FilePath: \code_formal\course\cal\newton_quo.cpp
 */
#include <bits/stdc++.h>
#define pr printf
#define sc scanf
#define for0(i, n) for (i = 0; i < n; i++)
#define for1n(i, n) for (i = 1; i <= n; i++)
#define forab(i, a, b) for (i = a; i <= b; i++)
#define forba(i, a, b) for (i = b; i >= a; i--)
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define int long long
#define pii pair<int, int>
#define vi vector<int>
#define vii vector<vector<int>>
#define vt3 vector<tuple<int, int, int>>
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace often
{
    inline void input(int &res)
    {
        char c = getchar();
        res = 0;
        int f = 1;
        while (!isdigit(c))
        {
            f ^= c == '-';
            c = getchar();
        }
        while (isdigit(c))
        {
            res = (res << 3) + (res << 1) + (c ^ 48);
            c = getchar();
        }
        res = f ? res : -res;
    }
    inline int qpow(int a, int b)
    {
        int ans = 1, base = a;
        while (b)
        {
            if (b & 1)
                ans = (ans * base % mod + mod) % mod;
            base = (base * base % mod + mod) % mod;
            b >>= 1;
        }
        return ans;
    }
    int fact(int n)
    {
        int res = 1;
        for (int i = 1; i <= n; i++)
            res = res * 1ll * i % mod;
        return res;
    }
    int C(int n, int k)
    {
        return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
    }
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1, y = 0;
            return a;
        }
        int res = exgcd(b, a % b, x, y);
        int t = y;
        y = x - (a / b) * y;
        x = t;
        return res;
    }
    int invmod(int a, int mod)
    {
        int x, y;
        exgcd(a, mod, x, y);
        x %= mod;
        if (x < 0)
            x += mod;
        return x;
    }
}
using namespace often;
using namespace std;

int n;

signed main()
{
    auto polymul = [&](vector<double> &v, double er) {
        v.emplace_back(0);
        vector<double> _ = v;
        int m = sz(v);
        for (int i = 1; i < m; i++)
            v[i] += er * _[i - 1];
    };
    auto polyval = [&](vector<double> const &c, double const &_x) -> double {
        double res = 0.0;
        int m = sz(c);
        for (int ii = 0; ii < m; ii++)
            res += c[ii] * pow(_x, (double)(m - ii - 1));
        return res;
    };

    int __ = 1;
    //input(_);
    while (__--)
    {
        double _x, temp;
        cin >> _x;
        vector<double> x, y;
        while (cin >> temp)
            x.emplace_back(temp), y.emplace_back(cos(temp));
        n = x.size();
        vector<vector<double>> a(n, vector<double>(n));
        int i, j;
        for0(i, n) a[i][0] = y[i];
        forab(j, 1, n - 1) forab(i, j, n - 1) a[i][j] = (a[i][j - 1] - a[i - 1][j - 1]) / (x[i] - x[i - j]);
        vector<double> v;
        v.emplace_back(a[n - 1][n - 1]);
        forba(i, 0, n - 2)
        {
            polymul(v, -x[i]);
            int l = sz(v);
            v[l - 1] += a[i][i];
        }

        for0(i, n)
            pr("%g\n", v[i]);
        for0(i, n)
        {
            for0(j, n)
                pr("%g ", a[i][j]);
            puts("");
        }
        double _y =  polyval(v, _x);
        pr("%g\n", _y);
        pr("%.6e",fabs(_y-cos(_x)));
    }

    return 0;
}

python代码

'''
Author: csc
Date: 2021-04-29 23:00:57
LastEditTime: 2021-04-30 09:58:07
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \code_py\newton_.py
'''
import numpy as np


def difference_quotient(x, y):
    n = len(x)
    a = np.zeros([n, n], dtype=float)
    for i in range(n):
        a[i][0] = y[i]
    for j in range(1, n):
        for i in range(j, n):
            a[i][j] = (a[i][j-1]-a[i-1][j-1])/(x[i]-x[i-j])
    return a


def newton(x, y, _x):
    a = difference_quotient(x, y)
    n = len(x)
    s = a[n-1][n-1]
    j = n-2
    while j >= 0:
        s = np.polyadd(np.polymul(s, np.poly1d(
            [x[j]], True)), np.poly1d([a[j][j]]))
        j -= 1
    for i in range(n):
        print('%g' % s[n-1-i])
    for i in range(n):
        for j in range(n):
            print('%g' % a[i][j], end=' ')
        print()
    _y = np.polyval(s, _x)
    print('%g' % _y)
    # re_err
    real_y = np.cos(_x)
    err = abs(_y-real_y)
    print('%.6e' % err)


def main():
    _x = float(input())
    x = list(map(float, input().split()))
    y = np.cos(x)
    newton(x, y, _x)


if __name__ == '__main__':
    main()

到此这篇关于详解Python牛顿插值法的文章就介绍到这了,更多相关Python牛顿插值法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现图片背景移除工具

    Python实现图片背景移除工具

    这篇文章主要为大家详细介绍了如何通过Python语言实现一个简单的图片背景移除工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-02-02
  • python用for循环求和的方法总结

    python用for循环求和的方法总结

    在本篇文章里小编给各位分享了关于python用for循环求和的方法以及相关实例代码,需要的朋友们参考学习下。
    2019-07-07
  • python使用递归解决全排列数字示例

    python使用递归解决全排列数字示例

    有1,2,3,4这4个数字,能组成多少个互不相同且无重复数字的三位数,下面是二种解决示例,需要的朋友可以参考下
    2014-02-02
  • python实现颜色rgb和hex相互转换的函数

    python实现颜色rgb和hex相互转换的函数

    这篇文章主要介绍了python实现颜色rgb和hex相互转换的函数,可实现将rgb表示的颜色转换成hex值的功能,非常具有实用价值,需要的朋友可以参考下
    2015-03-03
  • python实现简易云音乐播放器

    python实现简易云音乐播放器

    这篇文章主要介绍了python实现简易云音乐播放器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Django开发web后端对比SpringBoot示例分析

    Django开发web后端对比SpringBoot示例分析

    这篇文章主要介绍了Django开发web后端对比SpringBoot示例分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • matplotlib实现矩阵和图像的可视化表示

    matplotlib实现矩阵和图像的可视化表示

    这篇文章主要为大家详细介绍了如何利用matplotlib实现矩阵和图像的可视化表示,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解下
    2024-03-03
  • 浅析Python __name__ 是什么

    浅析Python __name__ 是什么

    这篇文章主要介绍了Python __name__ 是什么,本文通过实例代码给大家介绍了Python __name__ 的作用,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-07-07
  • OpenCv实现绘图功能

    OpenCv实现绘图功能

    这篇文章主要为大家详细介绍了OpenCv实现绘图功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-05-05
  • Tensorflow2.1 完成权重或模型的保存和加载

    Tensorflow2.1 完成权重或模型的保存和加载

    这篇文章主要为大家介绍了Tensorflow2.1 完成权重或模型的保存和加载,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-11-11

最新评论