JAVA并发中VOLATILE关键字的神奇之处详解

 更新时间:2021年05月11日 15:35:11   作者:statics  
这篇文章主要给大家介绍了关于JAVA并发中VOLATILE关键字的神奇之处的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

并发编程中的三个概念:

1.原子性

在Java中,对基本数据类型的变量的读取和赋值操作是原子性操作,即这些操作是不可被中断的,要么执行,要么不执行。

2.可见性

对于可见性,Java提供了volatile关键字来保证可见性。

  当一个共享变量被volatile修饰时,它会保证修改的值会立即被更新到主存,当有其他线程需要读取时,它会去内存中读取新值。

  而普通的共享变量不能保证可见性,因为普通共享变量被修改之后,什么时候被写入主存是不确定的,当其他线程去读取时,此时内存中可能还是原来的旧值,因此无法保证可见性。

  另外,通过synchronized和Lock也能够保证可见性,synchronized和Lock能保证同一时刻只有一个线程获取锁然后执行同步代码,并且在释放锁之前会将对变量的修改刷新到主存当中。因此可以保证可见性。

3.有序性

在Java内存模型中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。

  在Java里面,可以通过volatile关键字来保证一定的“有序性”(具体原理在下一节讲述)。另外可以通过synchronized和Lock来保证有序性,很显然,synchronized和Lock保证每个时刻是有一个线程执行同步代码,相当于是让线程顺序执行同步代码,自然就保证了有序性。

  另外,Java内存模型具备一些先天的“有序性”,即不需要通过任何手段就能够得到保证的有序性,这个通常也称为 happens-before 原则。如果两个操作的执行次序无法从happens-before原则推导出来,那么它们就不能保证它们的有序性,虚拟机可以随意地对它们进行重排序。

volatile关键字的两层语义

  一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。

  2)禁止进行指令重排序。

  先看一段代码,假如线程1先执行,线程2后执行:

//线程1
boolean stop = false;
while(!stop){
    doSomething();
}
 
//线程2
stop = true;

这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。

  下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。

  那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。

  但是用volatile修饰之后就变得不一样了:

  第一:使用volatile关键字会强制将修改的值立即写入主存;

  第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);

  第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。

  那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。

  那么线程1读取到的就是最新的正确的值。

2.volatile保证原子性吗?

  从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?

  下面看一个例子:

public  class  Test {
     public  volatile  int  inc =  0 ;
     
     public  void  increase() {
         inc++;
     }
     
     public  static  void  main(String[] args) {
         final  Test test =  new  Test();
         for ( int  i= 0 ;i< 10 ;i++){
             new  Thread(){
                 public  void  run() {
                     for ( int  j= 0 ;j< 1000 ;j++)
                         test.increase();
                 };
             }.start();
         }
         
         while (Thread.activeCount()> 1 )   //保证前面的线程都执行完
             Thread.yield();
         System.out.println(test.inc);
     }
}

  大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。

  可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。

  这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。

  在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:

  假如某个时刻变量inc的值为10,

  线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;

  然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。

  然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。

  那么两个线程分别进行了一次自增操作后,inc只增加了1。

  解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。

  根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。

  在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作类,即对基本数据类型的 自增(加1操作),自减(减1操作)、以及加法操作(加一个数),减法操作(减一个数)进行了封装,保证这些操作是原子性操作。atomic是利用CAS来实现原子性操作的(Compare And Swap),CAS实际上是利用处理器提供的CMPXCHG指令实现的,而处理器执行CMPXCHG指令是一个原子性操作。

3.volatile能保证有序性吗?

  在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。

  volatile关键字禁止指令重排序有两层意思:

  1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可

最后一点

CAS原理

由于 volatile 关键字不具有原子性,所以一般在使用 volatile 关键字的地方,常常出现 CAS。

CAS是 Compare And Swap,它和 volatile 关键字都是实现 JUC 的基础,其中 java.util.concurrent.atomic 核心都是 CAS 。

使用 CAS 有两个核心参数,第一个是旧值,第二个是期望值。根据当前类(this)和 内存偏移(valueOffset)计算出内存中的值,当内存中的值和旧值相等时,更新为新值并返回 true ,否则返回 false。

比如 AtomicInteger 类中的 CompareAndSet() 方法:

public final boolean compareAndSet(int expect, int update) {
 
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
 
}

根据 this 和 valueOffset 计算出的值与 expect 是否相等,相等把内存中的值更新为 update 并返回 true ,否则返回 false 。

说明了这些线程安全的包装类的底层都是用到了volatile关键字做线程安全的保证

总结

到此这篇关于JAVA并发中VOLATILE关键字神奇之处的文章就介绍到这了,更多相关JAVA并发VOLATILE关键字内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Java中从Integer到Date的转换方法

    Java中从Integer到Date的转换方法

    这篇文章主要介绍了Java中integer怎么转换date,在Java中,如果我们有一个Integer类型的数据,想要将其转换为Date类型,本文给大家介绍了实现方法,并通过代码示例讲解的非常详细,需要的朋友可以参考下
    2024-05-05
  • 详解IntelliJ IDEA 中如何配置多个jdk版本即(1.7和1.8两个jdk都可用)

    详解IntelliJ IDEA 中如何配置多个jdk版本即(1.7和1.8两个jdk都可用)

    这篇文章主要介绍了详解IntelliJ IDEA 中如何配置多个jdk版本即(1.7和1.8两个jdk都可用),非常具有实用价值,需要的朋友可以参考下
    2017-11-11
  • 解决MyBatis报错:There is no getter for property named'Xxx'in'class xxx.xxx.Xxx'

    解决MyBatis报错:There is no getter for 

    这篇文章主要介绍了解决MyBatis报错:There is no getter for property named'Xxx'in'class xxx.xxx.Xxx'问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-08-08
  • Java事件处理步骤讲解

    Java事件处理步骤讲解

    今天小编就为大家分享一篇关于Java事件处理步骤讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • Windows系统下JDK1.8与JDK11版本切换超详细教程

    Windows系统下JDK1.8与JDK11版本切换超详细教程

    这篇文章主要给大家介绍了关于Windows系统下JDK1.8与JDK11版本切换的超详细教程,我们可以有多个工程项目,用的JDK版本不一样,这个时候就需要进行自由切换JDK版本了,需要的朋友可以参考下
    2023-07-07
  • Springboot接入MyBatisPlus的实现

    Springboot接入MyBatisPlus的实现

    最近web端比较热门的框架就是SpringBoot和Mybatis-Plus,这里简单总结集成用法,具有一定的参考价值,感兴趣的可以了解一下
    2023-09-09
  • maven利用tomcat插件部署远程Linux服务器的步骤详解

    maven利用tomcat插件部署远程Linux服务器的步骤详解

    Maven已经是Java的项目管理常用方式,下面这篇文章主要给大家介绍了关于maven利用tomcat插件部署远程Linux服务器的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面随着小编来一起学习学习吧。
    2017-11-11
  • 深入理解Java设计模式之适配器模式

    深入理解Java设计模式之适配器模式

    这篇文章主要介绍了JAVA设计模式之适配器模式的的相关资料,文中示例代码非常详细,供大家参考和学习,感兴趣的朋友可以了解
    2021-11-11
  • Spring中的DefaultResourceLoader使用方法解读

    Spring中的DefaultResourceLoader使用方法解读

    这篇文章主要介绍了Spring中的DefaultResourceLoader使用方法解读,DefaultResourceLoader是spring提供的一个默认的资源加载器,DefaultResourceLoader实现了ResourceLoader接口,提供了基本的资源加载能力,需要的朋友可以参考下
    2024-02-02
  • Spring启动流程源码解析

    Spring启动流程源码解析

    这篇文章主要介绍了Spring启动流程源码解析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-07-07

最新评论