pytorch Variable与Tensor合并后 requires_grad()默认与修改方式

 更新时间:2021年05月12日 09:50:04   作者:西电小猪猪  
这篇文章主要介绍了pytorch Variable与Tensor合并后 requires_grad()默认与修改方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

pytorch更新完后合并了Variable与Tensor

torch.Tensor()能像Variable一样进行反向传播的更新,返回值为Tensor

Variable自动创建tensor,且返回值为Tensor,(所以以后不需要再用Variable)

Tensor创建后,默认requires_grad=Flase

可以通过xxx.requires_grad_()将默认的Flase修改为True

下面附代码及官方文档代码:

import torch
from torch.autograd import Variable #使用Variabl必须调用库
lis=torch.range(1,6).reshape((-1,3))#创建1~6 形状 
#行不指定(-1意为由计算机自己计算)列为3的floattensor矩阵

print(lis)
print(lis.requires_grad) #查看默认的requires_grad是否是Flase

lis.requires_grad_() #使用.requires_grad_()修改默认requires_grad为true
print(lis.requires_grad)

结果如下:

tensor([[1., 2., 3.],
[4., 5., 6.]])
False
True

创建一个Variable,Variable必须接收Tensor数据 不能直接写为 a=Variable(range(6)).reshape((-1,3))

否则报错 Variable data has to be a tensor, but got range

正确如下:

import torch
from torch.autograd import Variable
tensor=torch.FloatTensor(range(8)).reshape((-1,4))
my_ten=Variable(tensor)
print(my_ten)
print(my_ten.requires_grad)

my_ten.requires_grad_()
print(my_ten.requires_grad)

结果:

tensor([[0., 1., 2., 3.],
[4., 5., 6., 7.]])
False
True

由上面可以看出,Tensor完全可以取代Variable。

下面给出官方文档:

# 默认创建requires_grad = False的Tensor  
x = torch . ones ( 1 ) # create a tensor with requires_grad=False (default)
x . requires_grad
# out: False

# 创建另一个Tensor,同样requires_grad = False
y = torch . ones ( 1 ) # another tensor with requires_grad=False
# both inputs have requires_grad=False. so does the output
z = x + y
# 因为两个Tensor x,y,requires_grad=False.都无法实现自动微分,
# 所以操作(operation)z=x+y后的z也是无法自动微分,requires_grad=False
z . requires_grad
# out: False

# then autograd won't track this computation. let's verify!
# 因而无法autograd,程序报错
z . backward ( ) 
# out:程序报错:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

# now create a tensor with requires_grad=True
w = torch . ones ( 1 , requires_grad = True ) 
w . requires_grad
# out: True

# add to the previous result that has require_grad=False
# 因为total的操作中输入Tensor w的requires_grad=True,因而操作可以进行反向传播和自动求导。
total = w + z
# the total sum now requires grad!
total . requires_grad
# out: True
# autograd can compute the gradients as well
total . backward ( ) 
w . grad
#out: tensor([ 1.])

# and no computation is wasted to compute gradients for x, y and z, which don't require grad
# 由于z,x,y的requires_grad=False,所以并没有计算三者的梯度
z . grad == x . grad == y . grad == None 
# True
existing_tensor . requires_grad_ ( ) 
existing_tensor . requires_grad
# out:True

或者直接用Tensor创建时给定requires_grad=True

my_tensor = torch.zeros(3,4,requires_grad = True) 
my_tensor.requires_grad
# out: True
lis=torch.range(1,6,requires_grad=True).reshape((-1,3))
print(lis)
print(lis.requires_grad)
lis.requires_grad_()
print(lis.requires_grad)

结果

tensor([[1., 2., 3.],
[4., 5., 6.]], requires_grad=True)
True
True

补充:volatile 和 requires_grad在pytorch中的意思

Backward过程中排除子图

pytorch的BP过程是由一个函数决定的,loss.backward(), 可以看到backward()函数里并没有传要求谁的梯度。那么我们可以大胆猜测,在BP的过程中,pytorch是将所有影响loss的Variable都求了一次梯度。

但是有时候,我们并不想求所有Variable的梯度。那就要考虑如何在Backward过程中排除子图(ie.排除没必要的梯度计算)。

如何BP过程中排除子图? Variable的两个参数(requires_grad和volatile)

requires_grad=True 要求梯度

requires_grad=False 不要求梯度

volatile=True相当于requires_grad=False。反之则反之。。。。。。。ok

注意:如果a是requires_grad=True,b是requires_grad=False。则c=a+b是requires_grad=True。同样的道理应用于volatile

为什么要排除子图

也许有人会问,梯度全部计算,不更新的话不就得了。

这样就涉及了效率的问题了,计算很多没用的梯度是浪费了很多资源的(时间,计算机内存)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • Python基础数据类型tuple元组的概念与用法

    Python基础数据类型tuple元组的概念与用法

    元组(tuple)是 Python 中另一个重要的序列结构,和列表类似,元组也是由一系列按特定顺序排序的元素组成,这篇文章主要给大家介绍了关于Python基础数据类型tuple元组的概念与使用方法,需要的朋友可以参考下
    2021-07-07
  • 完美解决python针对hdfs上传和下载的问题

    完美解决python针对hdfs上传和下载的问题

    这篇文章主要介绍了完美解决python针对hdfs上传和下载的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Pytho的HTTP交互httpx包模块使用详解

    Pytho的HTTP交互httpx包模块使用详解

    Python 的 httpx 包是一个用于 HTTP 交互的一个优秀且灵活的模块。本文进行详细的讲解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-03-03
  • VS2019+python3.7+opencv4.1+tensorflow1.13配置详解

    VS2019+python3.7+opencv4.1+tensorflow1.13配置详解

    这篇文章主要介绍了VS2019+python3.7+opencv4.1+tensorflow1.13配置详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • 在keras中对单一输入图像进行预测并返回预测结果操作

    在keras中对单一输入图像进行预测并返回预测结果操作

    这篇文章主要介绍了在keras中对单一输入图像进行预测并返回预测结果操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python中单线程、多线程和多进程的效率对比实验实例

    Python中单线程、多线程和多进程的效率对比实验实例

    这篇文章主要介绍了Python单线程多线程和多进程效率对比,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • python pip如何手动安装二进制包

    python pip如何手动安装二进制包

    这篇文章主要介绍了python pip如何手动安装二进制包,帮助大家更好的进行python开发,感兴趣的朋友可以了解下
    2020-09-09
  • python 从远程服务器下载日志文件的程序

    python 从远程服务器下载日志文件的程序

    本文提供了一种方法,该程序可实现抓取服务器的日志文件到本地,根据该程序可自行扩展对日志文件的自动化分析。常用于数据挖掘、生产维护等
    2013-02-02
  • python实现的二叉树算法和kmp算法实例

    python实现的二叉树算法和kmp算法实例

    最近重温数据结构,又用python,所以就用python重新写了数据结构的一些东西,以下是二叉树的python写法
    2014-04-04
  • PID原理与python的简单实现和调参

    PID原理与python的简单实现和调参

    这篇文章主要介绍了PID原理与python的简单实现和调参文章围绕主题展开详细的内容介绍,具有一定的参考价值。感兴趣的小伙伴可以参考一下
    2022-08-08

最新评论