Python机器学习之PCA降维算法详解

 更新时间:2021年05月19日 16:30:52   作者:ProChick  
今天带大家复习python机器学习的知识点,文中对PCA降维算法介绍的非常详细,对正在学习python机器学习的小伙伴们有很好地帮助,需要的朋友可以参考下

一、算法概述

  • 主成分分析 (Principal ComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。
  • PCA 是最常用的一种降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中,并期望在所投影的维度上数据的方差最大,以此使用较少的维度,同时保留较多原数据的维度。
  • PCA 算法目标是求出样本数据协方差矩阵的特征值和特征向量,而协方差矩阵的特征向量的方向就是PCA需要投影的方向。使样本数据向低维投影后,能尽可能表征原始的数据。
  • PCA 可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能的保留原始数据的信息。
  • PCA 通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。

二、算法步骤

在这里插入图片描述

1.将原始数据按行组成m行n列的矩阵X

2.将X的每一列(代表一个属性字段)进行零均值化,即减去这一列的均值

3.求出协方差矩阵

4.求出协方差矩阵的特征值及对应的特征向量r

5.将特征向量按对应特征值大小从左到右按列排列成矩阵,取前k列组成矩阵P

6.计算降维到k维的数据

三、相关概念

  • 方差:描述一个数据的离散程度

在这里插入图片描述

  • 协方差:描述两个数据的相关性,接近1就是正相关,接近-1就是负相关,接近0就是不相关

在这里插入图片描述

  • 协方差矩阵:协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差

在这里插入图片描述

  • 特征值:用于选取降维的K个特征值
  • 特征向量:用于选取降维的K个特征向量

四、算法优缺点

优点

  • 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
  • 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
  • 计算方法简单,主要运算是特征值分解,易于实现。

缺点

  • 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
  • 方差小的非主成分也可能含有对样本差异的重要信息,降维丢弃的数据可能对后续数据处理有影响。

五、算法实现

自定义实现

import numpy as np


# 对初始数据进行零均值化处理
def zeroMean(dataMat):
    # 求列均值
    meanVal = np.mean(dataMat, axis=0)
    # 求列差值
    newData = dataMat - meanVal
    return newData, meanVal


# 对初始数据进行降维处理
def pca(dataMat, percent=0.19):
    newData, meanVal = zeroMean(dataMat)

    # 求协方差矩阵
    covMat = np.cov(newData, rowvar=0)

    # 求特征值和特征向量
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))

    # 抽取前n个特征向量
    n = percentage2n(eigVals, percent)
    print("数据降低到:" + str(n) + '维')

    # 将特征值按从小到大排序
    eigValIndice = np.argsort(eigVals)
    # 取最大的n个特征值的下标
    n_eigValIndice = eigValIndice[-1:-(n + 1):-1]
    # 取最大的n个特征值的特征向量
    n_eigVect = eigVects[:, n_eigValIndice]

    # 取得降低到n维的数据
    lowDataMat = newData * n_eigVect
    reconMat = (lowDataMat * n_eigVect.T) + meanVal

    return reconMat, lowDataMat, n


# 通过方差百分比确定抽取的特征向量的个数
def percentage2n(eigVals, percentage):
    # 按降序排序
    sortArray = np.sort(eigVals)[-1::-1]
    # 求和
    arraySum = sum(sortArray)

    tempSum = 0
    num = 0
    for i in sortArray:
        tempSum += i
        num += 1
        if tempSum >= arraySum * percentage:
            return num


if __name__ == '__main__':
    # 初始化原始数据(行代表样本,列代表维度)
    data = np.random.randint(1, 20, size=(6, 8))
    print(data)

    # 对数据降维处理
    fin = pca(data, 0.9)
    mat = fin[1]
    print(mat)

利用Sklearn库实现

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# 加载数据
data = load_iris()
x = data.data
y = data.target

# 设置数据集要降低的维度
pca = PCA(n_components=2)
# 进行数据降维
reduced_x = pca.fit_transform(x)

red_x, red_y = [], []
green_x, green_y = [], []
blue_x, blue_y = [], []

# 对数据集进行分类
for i in range(len(reduced_x)):
    if y[i] == 0:
        red_x.append(reduced_x[i][0])
        red_y.append(reduced_x[i][1])
    elif y[i] == 1:
        green_x.append(reduced_x[i][0])
        green_y.append(reduced_x[i][1])
    else:
        blue_x.append(reduced_x[i][0])
        blue_y.append(reduced_x[i][1])

plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(green_x, green_y, c='g', marker='D')
plt.scatter(blue_x, blue_y, c='b', marker='.')
plt.show()

六、算法优化

PCA是一种线性特征提取算法,通过计算将一组特征按重要性从小到大重新排列得到一组互不相关的新特征,但该算法在构造子集的过程中采用等权重的方式,忽略了不同属性对分类的贡献是不同的。

  • KPCA算法

KPCA是一种改进的PCA非线性降维算法,它利用核函数的思想,把样本数据进行非线性变换,然后在变换空间进行PCA,这样就实现了非线性PCA。

  • 局部PCA算法

局部PCA是一种改进的PCA局部降维算法,它在寻找主成分时加入一项具有局部光滑性的正则项,从而使主成分保留更多的局部性信息。

到此这篇关于Python机器学习之PCA降维算法详解的文章就介绍到这了,更多相关Python PCA降维算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python远程创建docker容器的方法

    Python远程创建docker容器的方法

    这篇文章主要介绍了Python远程创建docker容器的方法,如果docker  ps找不到该容器,可以使用 docker ps -a查看所有的,然后看刚才创建的容器的STATUS是EXIT0还是EXIT1如果是1,那应该是有报错,使用 docker logs 容器id命令来查看日志,根据日志进行解决,需要的朋友可以参考下
    2024-04-04
  • Python OpenCV实现图像增强操作详解

    Python OpenCV实现图像增强操作详解

    由于很多不确定因素,导致图像采集的光环境极其复杂;为了提高目标检测模型的泛化能力,本文将使用python中的opencv模块实现常见的图像增强方法,感兴趣的可以了解一下
    2022-10-10
  • Python使用matplotlib实现绘制自定义图形功能示例

    Python使用matplotlib实现绘制自定义图形功能示例

    这篇文章主要介绍了Python使用matplotlib实现绘制自定义图形功能,结合实例形式分析了Python基于matplotlib模块实现自定义图形绘制相关操作技巧,需要的朋友可以参考下
    2018-01-01
  • 教你用Python创建微信聊天机器人

    教你用Python创建微信聊天机器人

    这篇文章主要手把手教你用Python创建微信聊天机器人,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • Python实现端口扫描器的示例代码

    Python实现端口扫描器的示例代码

    本文主要介绍了Python实现端口扫描器,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • OpenCV图像识别之姿态估计Pose Estimation学习

    OpenCV图像识别之姿态估计Pose Estimation学习

    这篇文章主要为大家介绍了OpenCV图像识别之姿态估计Pose Estimation学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • JAVA SWT事件四种写法实例解析

    JAVA SWT事件四种写法实例解析

    这篇文章主要介绍了JAVA SWT事件四种写法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • pycharm恢复默认设置或者是替换pycharm的解释器实例

    pycharm恢复默认设置或者是替换pycharm的解释器实例

    今天小编就为大家分享一篇pycharm恢复默认设置或者是替换pycharm的解释器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • Python的函数使用示例详解

    Python的函数使用示例详解

    在Python的函数中,我们将其分为内置函数、自定义函数、main函数三个模块,当然,使用的过程中会涉及到变量以及参数,这些都会举例进行说明,对Python函数使用相关知识感兴趣的朋友跟随小编一起看看吧
    2021-12-12
  • Python实现快速傅里叶变换的方法(FFT)

    Python实现快速傅里叶变换的方法(FFT)

    这篇文章主要介绍了Python实现快速傅里叶变换的方法(FFT),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07

最新评论