基于KL散度、JS散度以及交叉熵的对比

 更新时间:2021年05月24日 09:19:16   作者:敲代码的quant  
这篇文章主要介绍了基于KL散度、JS散度以及交叉熵的对比,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

在看论文《Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection》时,文中提到了这三种方法来比较时间序列中不同区域概率分布的差异。

KL散度、JS散度和交叉熵

三者都是用来衡量两个概率分布之间的差异性的指标。不同之处在于它们的数学表达。

对于概率分布P(x)和Q(x)

1)KL散度(Kullback–Leibler divergence)

又称KL距离,相对熵。

当P(x)和Q(x)的相似度越高,KL散度越小。

KL散度主要有两个性质:

(1)不对称性

尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即D(P||Q)!=D(Q||P)。

(2)非负性

相对熵的值是非负值,即D(P||Q)>0。

2)JS散度(Jensen-Shannon divergence)

JS散度也称JS距离,是KL散度的一种变形。

但是不同于KL主要又两方面:

(1)值域范围

JS散度的值域范围是[0,1],相同则是0,相反为1。相较于KL,对相似度的判别更确切了。

(2)对称性

即 JS(P||Q)=JS(Q||P),从数学表达式中就可以看出。

3)交叉熵(Cross Entropy)

在神经网络中,交叉熵可以作为损失函数,因为它可以衡量P和Q的相似性。

交叉熵和相对熵的关系:

以上都是基于离散分布的概率,如果是连续的数据,则需要对数据进行Probability Density Estimate来确定数据的概率分布,就不是求和而是通过求积分的形式进行计算了。

补充:信息熵、交叉熵与KL散度

信息量

在信息论与编码中,信息量,也叫自信息(self-information),是指一个事件所能够带来信息的多少。一般地,这个事件发生的概率越小,其带来的信息量越大。

从编码的角度来看,这个事件发生的概率越大,其编码长度越小,这个事件发生的概率越小,其编码长度就越大。但是编码长度小也是代价的,比如字母'a'用数字‘0'来表示时,为了避免歧义,就不能有其他任何以‘0'开头的编码了。

因此,信息量定义如下:

在这里插入图片描述

信息熵

信息熵是指一个概率分布p的平均信息量,代表着随机变量或系统的不确定性,熵越大,随机变量或系统的不确定性就越大。从编码的角度来看,信息熵是表示一个概率分布p需要的平均编码长度,其可表示为:

在这里插入图片描述

交叉熵

交叉熵是指在给定真实分布q情况下,采用一个猜测的分布p对其进行编码的平均编码长度(或用猜测的分布来编码真实分布得到的信息量)。

交叉熵可以用来衡量真实数据分布于当前分布的相似性,当前分布与真实分布相等时(q=p),交叉熵达到最小值。

其可定义为:

在这里插入图片描述

因此,在很多机器学习算法中都使用交叉熵作为损失函数,交叉熵越小,当前分布与真实分布越接近。此外,相比于均方误差,交叉熵具有以下两个优点:

在LR中,如果用均方误差损失函数,它是一个非凸函数,而使用交叉熵损失函数,它是一个凸函数;

在LR中使用sigmoid激活函数,如果使用均方误差损失函数,在对其求残差时,其表达式与激活函数的导数有关,而sigmoid(如下图所示)的导数在输入值超出[-5,5]范围后将非常小,这会带来梯度消失问题,而使用交叉熵损失函数则能避免这个问题。

在这里插入图片描述

KL散度

KL散度又称相对熵,是衡量两个分布之间的差异性。从编码的角度来看,KL散度可表示为采用猜测分布p得到的平均编码长度与采用真实分布q得到的平均编码长度多出的bit数,其数学表达式可定义为:

在这里插入图片描述

一般地,两个分布越接近,其KL散度越小,最小为0.它具有两个特性:

非负性,即KL散度最小值为0,其详细证明可见[1] ;

非对称性,即Dq(p)不等于Dp(q) ; KL散度与交叉熵之间的关系

在这里,再次盗用[1]的图来形象地表达这两者之间的关系:

在这里插入图片描述

最上方cH(p)为信息熵,表示分布p的平均编码长度/信息量;

中间的Hq(p)表示用分布q表编码分布p所含的信息量或编码长度,简称为交叉熵,其中Hq(p)>=H(p)

;最小方的Dq(p)表示的是q对p的KL距离,衡量了分布q和分布p之间的差异性,其中Dq(p)>=0;

从上图可知,Hq(p) = H(p) + Dq(p)。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python filter()及reduce()函数使用方法解析

    Python filter()及reduce()函数使用方法解析

    这篇文章主要介绍了Python filter()及reduce()函数使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • python使用期物处理并发教程

    python使用期物处理并发教程

    这篇文章主要为大家介绍了python使用期物处理并发教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Python Django ORM连表正反操作技巧

    Python Django ORM连表正反操作技巧

    这篇文章主要介绍了Django-ORM-连表正反操作,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-06-06
  • python 实现读取一个excel多个sheet表并合并的方法

    python 实现读取一个excel多个sheet表并合并的方法

    今天小编就为大家分享一篇python 实现读取一个excel多个sheet表并合并的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • pycharm进行Git关联和取消方式

    pycharm进行Git关联和取消方式

    这篇文章主要介绍了pycharm进行Git关联和取消方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • Python自动发邮件脚本

    Python自动发邮件脚本

    本文主要介绍了Python自动发邮件脚本的相关知识。具有很好的参考价值,下面跟着小编一起来看下吧
    2017-03-03
  • python numpy矩阵信息说明,shape,size,dtype

    python numpy矩阵信息说明,shape,size,dtype

    这篇文章主要介绍了python numpy矩阵信息说明,shape,size,dtype,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • 使用py2exe在Windows下将Python程序转为exe文件

    使用py2exe在Windows下将Python程序转为exe文件

    这篇文章主要介绍了Windows下用py2exe将Python程序转为exe文件的方法,注意py2exe只是负责文件格式的转换,并不能将Python程序编译为机器码,要的朋友可以参考下
    2016-03-03
  • python 实现多维数组转向量

    python 实现多维数组转向量

    今天小编就为大家分享一篇python 实现多维数组转向量,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • Python验证码识别的方法

    Python验证码识别的方法

    这篇文章主要介绍了Python验证码识别的方法,涉及Python针对验证码图片的相关分析与操作技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-07-07

最新评论