pandas取dataframe特定行列的实现方法

 更新时间:2021年05月24日 14:14:32   作者:nxf_rabbit75  
大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,本文介绍了pandas取dataframe特定行列的实现方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

1.按列取、按索引/行取、按特定行列取

import numpy as np
from pandas import DataFrame
import pandas as pd
 
 
df=DataFrame(np.arange(12).reshape((3,4)),index=['one','two','thr'],columns=list('abcd'))
 
df['a']#取a列
df[['a','b']]#取a、b列
 
#ix可以用数字索引,也可以用index和column索引
df.ix[0]#取第0行
df.ix[0:1]#取第0行
df.ix['one':'two']#取one、two行
df.ix[0:2,0]#取第0、1行,第0列
df.ix[0:1,'a']#取第0行,a列
df.ix[0:2,'a':'c']#取第0、1行,abc列
df.ix['one':'two','a':'c']#取one、two行,abc列
df.ix[0:2,0:1]#取第0、1行,第0列
df.ix[0:2,0:2]#取第0、1行,第0、1列
 
#loc只能通过index和columns来取,不能用数字
df.loc['one','a']#one行,a列
df.loc['one':'two','a']#one到two行,a列
df.loc['one':'two','a':'c']#one到two行,a到c列
df.loc['one':'two',['a','c']]#one到two行,ac列
 
#iloc只能用数字索引,不能用索引名
df.iloc[0:2]#前2行
df.iloc[0]#第0行
df.iloc[0:2,0:2]#0、1行,0、1列
df.iloc[[0,2],[1,2,3]]#第0、2行,1、2、3列
 
#iat取某个单值,只能数字索引
df.iat[1,1]#第1行,1列
#at取某个单值,只能index和columns索引
df.at['one','a']#one行,a列

2.按条件取行

选取等于某些值的行记录 用 ==
df.loc[df[‘column_name'] == some_value]
 
选取某列是否是某一类型的数值 用 isin
df.loc[df[‘column_name'].isin(some_values)]
 
多种条件的选取 用 &
df.loc[(df[‘column'] == some_value) & df[‘other_column'].isin(some_values)]
 
选取不等于某些值的行记录 用 !=
df.loc[df[‘column_name'] != some_value]
 
isin返回一系列的数值,如果要选择不符合这个条件的数值使用~
df.loc[~df[‘column_name'].isin(some_values)]

3.取完之后替换

df = pd.DataFrame({"id": [25,53,15,47,52,54,45,9], "sex": list('mfmfmfmf'), 'score': [1.2, 2.3, 3.4, 4.5,6.4,5.7,5.6,4.3],"name":['daisy','tony','peter','tommy','ana','david','ken','jim']})

将男性(m)替换为1,女性(f)替换为0

方法1:

df.ix[df['sex']=='f','sex']=0
df.ix[df['sex']=='m','sex']=1

注:在上面的代码中,逗号后面的‘sex'起到固定列名的作用

方法2:

df.sex[df['sex']=='m']=1
df.sex[df['sex']=='f']=0  

4.删除特定行

# 要删除列“score”<50的所有行:
df = df.drop(df[df.score < 50].index)
 
df.drop(df[df.score < 50].index, inplace=True)
 
# 多条件情况
# 可以使用操作符: | 只需其中一个成立, & 同时成立, ~ 表示取反,它们要用括号括起来。
# 例如删除列“score<50 和>20的所有行
df = df.drop(df[(df.score < 50) & (df.score > 20)].index)

参考文献:

【1】pandas 根据列的值选取所有行

【2】pandas小技巧之--值替换

【3】[译]如何根据条件从pandas DataFrame中删除不需要的行? - everfight - 博客园

【4】官网

到此这篇关于pandas取dataframe特定行/列的文章就介绍到这了,更多相关pandas取dataframe特定行/列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python爬取热搜制作词云

    python爬取热搜制作词云

    这篇文章主要介绍了python爬取百度热搜制作词云,首先爬取百度热搜,至少间隔1小时,存入文件,避免重复请求,如果本1小时有了不再请求,存入数据库,供词云包使用,爬取热搜,具体流程请需要的小伙伴参考下面文章内容
    2021-12-12
  • python快速查找算法应用实例

    python快速查找算法应用实例

    这篇文章主要介绍了python快速查找算法,是一个比较经典的算法应用,有一定的借鉴价值,需要的朋友可以参考下
    2014-09-09
  • pygame可视化幸运大转盘实现

    pygame可视化幸运大转盘实现

    这篇文章主要介绍了pygame可视化幸运大转盘实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • python文件名和文件路径操作实例

    python文件名和文件路径操作实例

    下面小编就为大家带来一篇python文件名和文件路径操作实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-09-09
  • 详解如何使用opencv实现图片相似度检测

    详解如何使用opencv实现图片相似度检测

    这篇文章主要为大家详细介绍了如何使用opencv实现图片相似度检测,文中的示例代码讲解详细,对于我们学习人工智能有一定的帮助,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-12-12
  • python实现布尔型盲注的示例代码

    python实现布尔型盲注的示例代码

    这篇文章主要介绍了python实现sql布尔盲注的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python控制台输出俄罗斯方块移动和旋转功能

    Python控制台输出俄罗斯方块移动和旋转功能

    这篇文章主要介绍了Python控制台输出俄罗斯方块移动和旋转功能,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • Python实现印章代码的算法解析

    Python实现印章代码的算法解析

    这篇文章主要为大家介绍了Python印章代码实现算法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Pytorch平均池化nn.AvgPool2d()使用方法实例

    Pytorch平均池化nn.AvgPool2d()使用方法实例

    平均池化层,又叫平均汇聚层,下面这篇文章主要给大家介绍了关于Pytorch平均池化nn.AvgPool2d()使用方法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-02-02
  • 由浅入深学习TensorFlow MNIST 数据集

    由浅入深学习TensorFlow MNIST 数据集

    这篇文章主要由浅入深学习的讲解TensorFlow MNIST 数据集,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09

最新评论