对Keras自带Loss Function的深入研究

 更新时间:2021年05月25日 09:15:48   作者:Forskamse  
这篇文章主要介绍了对Keras自带Loss Function的深入研究,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

本文研究Keras自带的几个常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

注意到二者的主要差别在于输入是否为integer tensor。在文档中,我们还可以找到关于二者如何选择的描述:

解释一下这里的Integer target 与 Categorical target,实际上Integer target经过独热编码就变成了Categorical target,举例说明:

(类别数5)
Integer target: [1,2,4]
Categorical target: [[0. 1. 0. 0. 0.]
					 [0. 0. 1. 0. 0.]
					 [0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法来实现二者的转化:

from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的输入参数output,都是softmax输出的tensor。我们都知道softmax的输出服从多项分布,

因此categorical_crossentropy和sparse_categorical_crossentropy应当应用于多分类问题。

我们再看看这两个的源码,来验证一下:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor of the same shape as `output`.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last', and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  # Note: nn.softmax_cross_entropy_with_logits_v2
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # scale preds so that the class probas of each sample sum to 1
    output = output / math_ops.reduce_sum(output, axis, True)
    # manual computation of crossentropy
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
    return -math_ops.reduce_sum(target * math_ops.log(output), axis)
  else:
    return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)
--------------------------------------------------------------------------------------------------------------------
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
  """Categorical crossentropy with integer targets.
  Arguments:
      target: An integer tensor.
      output: A tensor resulting from a softmax
          (unless `from_logits` is True, in which
          case `output` is expected to be the logits).
      from_logits: Boolean, whether `output` is the
          result of a softmax, or is a tensor of logits.
      axis: Int specifying the channels axis. `axis=-1` corresponds to data
          format `channels_last', and `axis=1` corresponds to data format
          `channels_first`.
  Returns:
      Output tensor.
  Raises:
      ValueError: if `axis` is neither -1 nor one of the axes of `output`.
  """
  rank = len(output.shape)
  axis = axis % rank
  if axis != rank - 1:
    permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]
    output = array_ops.transpose(output, perm=permutation)
  # Note: nn.sparse_softmax_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output)
  output_shape = output.shape
  targets = cast(flatten(target), 'int64')
  logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
  res = nn.sparse_softmax_cross_entropy_with_logits(
      labels=targets, logits=logits)
  if len(output_shape) >= 3:
    # If our output includes timesteps or spatial dimensions we need to reshape
    return array_ops.reshape(res, array_ops.shape(output)[:-1])
  else:
    return res

categorical_crossentropy计算交叉熵时使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本质并无区别,只是对输入参数logits的要求不同,v2要求的是logits与labels格式相同(即元素也是独热的),而sparse则要求logits的元素是个数值,与上面Integer format和Categorical format的对比含义类似。

综上所述,categorical_crossentropy和sparse_categorical_crossentropy只不过是输入参数target类型上的区别,其loss的计算在本质上没有区别,就是交叉熵;二者是针对多分类(Multi-class)任务的。

2. Binary_crossentropy

二元交叉熵,从名字中我们可以看出,这个loss function可能是适用于二分类的。文档中并没有详细说明,那么直接看看源码吧:

https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def binary_crossentropy(target, output, from_logits=False):
  """Binary crossentropy between an output tensor and a target tensor.
  Arguments:
      target: A tensor with the same shape as `output`.
      output: A tensor.
      from_logits: Whether `output` is expected to be a logits tensor.
          By default, we consider that `output`
          encodes a probability distribution.
  Returns:
      A tensor.
  """
  # Note: nn.sigmoid_cross_entropy_with_logits
  # expects logits, Keras expects probabilities.
  if not from_logits:
    # transform back to logits
    epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
    output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
    output = math_ops.log(output / (1 - output))
  return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源码中计算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的应该比较熟悉这个损失函数了,它可以用于简单的二分类,也可以用于多标签任务,而且应用广泛,在样本合理的情况下(如不存在类别不均衡等问题)的情况下,通常可以直接使用。

补充:keras自定义loss function的简单方法

首先看一下Keras中我们常用到的目标函数(如mse,mae等)是如何定义的

from keras import backend as K
def mean_squared_error(y_true, y_pred):
    return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    return 100. * K.mean(diff, axis=-1)
def categorical_crossentropy(y_true, y_pred):
    '''Expects a binary class matrix instead of a vector of scalar classes.
    '''
    return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
    '''expects an array of integer classes.
    Note: labels shape must have the same number of dimensions as output shape.
    If you get a shape error, add a length-1 dimension to labels.
    '''
    return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
    return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
    y_true = K.clip(y_true, K.epsilon(), 1)
    y_pred = K.clip(y_pred, K.epsilon(), 1)
    return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
    return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
    y_true = K.l2_normalize(y_true, axis=-1)
    y_pred = K.l2_normalize(y_pred, axis=-1)
    return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定义特定任务的目标函数。比如:定义预测值与真实值的差

from keras import backend as K
def new_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)

然后,应用你自己定义的目标函数进行编译

from keras import backend as K
def my_loss(y_true,y_pred):
    return K.mean((y_pred-y_true),axis = -1)
model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,
metrics=['accuracy'])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python文件特定行插入和替换实例详解

    python文件特定行插入和替换实例详解

    这篇文章主要介绍了python文件特定行插入和替换实例详解的相关资料,需要的朋友可以参考下
    2017-07-07
  • 解决vscode python print 输出窗口中文乱码的问题

    解决vscode python print 输出窗口中文乱码的问题

    今天小编就为大家分享一篇解决vscode python print 输出窗口中文乱码的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 帮你快速上手Jenkins并实现自动化部署

    帮你快速上手Jenkins并实现自动化部署

    在未学习Jenkins之前,只是对Jenkins有一个比较模糊的理解,即Jenkins是一个自动化构建项目发布的工具,可以实现代码->github或者gitlab库->jenkins自动部署->访问的整体的过程,而无需人为重新打包,今天就带大家详细了解一下,帮你快速上手Jenkins,需要的朋友可以参考下
    2021-06-06
  • python文字转语音的实例代码分析

    python文字转语音的实例代码分析

    在本篇文章里小编给大家整理的是关于python文字转语音的实例代码分析,有需要的朋友们可以参考下。
    2019-11-11
  • Python break语句详解

    Python break语句详解

    这篇文章主要介绍了Python break语句的作用、使用方法,需要的朋友可以参考下
    2014-03-03
  • python写入csv时writerow()和writerows()函数简单示例

    python写入csv时writerow()和writerows()函数简单示例

    这篇文章主要给大家介绍了关于python写入csv时writerow()和writerows()函数的相关资料,writerows和writerow是Python中csv模块中的两个函数,用于将数据写入CSV文件,需要的朋友可以参考下
    2023-07-07
  • Pytorch 之修改Tensor部分值方式

    Pytorch 之修改Tensor部分值方式

    今天小编就为大家分享一篇Pytorch 之修改Tensor部分值方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 对python中的argv和argc使用详解

    对python中的argv和argc使用详解

    今天小编就为大家分享一篇对python中的argv和argc使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 用Python代码来解图片迷宫的方法整理

    用Python代码来解图片迷宫的方法整理

    这篇文章主要介绍了用Python代码来解图片迷宫的方法整理,本文精选了StackOverflow相关人气问题上的几个回答,需要的朋友可以参考下
    2015-04-04
  • Python 多线程并行执行的实现示例

    Python 多线程并行执行的实现示例

    本文主要介绍了Python 多线程并行执行的实现示例,通过使用threading和concurrent.futures模块可以进行实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-07-07

最新评论