pytorch Dropout过拟合的操作

 更新时间:2021年05月27日 11:08:41   作者:Do_More  
这篇文章主要介绍了pytorch Dropout过拟合的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

如下所示:

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
torch.manual_seed(1)
N_SAMPLES = 20
N_HIDDEN = 300
# training data
x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)
y = x + 0.3 * torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones(N_SAMPLES, 1))
x, y = Variable(x), Variable(y)
# test data
test_x = torch.unsqueeze(torch.linspace(-1, 1, N_SAMPLES), 1)
test_y = test_x + 0.3 * torch.normal(torch.zeros(N_SAMPLES, 1), torch.ones(N_SAMPLES, 1))
test_x = Variable(test_x, volatile=True)
test_y = Variable(test_y, volatile=True)
# show data
# plt.scatter(x.data.numpy(), y.data.numpy(), c='magenta', s=50, alpha=0.5, label='train')
# plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='cyan', s=50, alpha=0.5, label='test')
# plt.legend(loc='upper left')
# plt.ylim((-2.5, 2.5))
# plt.show()
net_overfitting = torch.nn.Sequential(
    torch.nn.Linear(1, N_HIDDEN),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, N_HIDDEN),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, 1),
)
net_dropped = torch.nn.Sequential(
    torch.nn.Linear(1, N_HIDDEN),
    torch.nn.Dropout(0.5),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, N_HIDDEN),
    torch.nn.Dropout(0.5),
    torch.nn.ReLU(),
    torch.nn.Linear(N_HIDDEN, 1),
)
print(net_overfitting)
print(net_dropped)
optimizer_ofit = torch.optim.Adam(
    net_overfitting.parameters(),
    lr = 0.01,
)
optimizer_drop = torch.optim.Adam(
    net_dropped.parameters(),
    lr = 0.01,
)
loss_func = torch.nn.MSELoss()
plt.ion()
for t in range(500):
    pred_ofit = net_overfitting(x)
    pred_drop = net_dropped(x)
    loss_ofit = loss_func(pred_ofit, y)
    loss_drop = loss_func(pred_drop, y)
    optimizer_ofit.zero_grad()
    optimizer_drop.zero_grad()
    loss_ofit.backward()
    loss_drop.backward()
    optimizer_ofit.step()
    optimizer_drop.step()
    if t % 10 == 0:
        net_overfitting.eval()
        net_dropped.eval()
        plt.cla()
        test_pred_ofit = net_overfitting(test_x)
        test_pred_drop = net_dropped(test_x)
        plt.scatter(x.data.numpy(), y.data.numpy(), c='magenta', s=50, alpha=0.3, label='train')
        plt.scatter(test_x.data.numpy(), test_y.data.numpy(), c='cyan', s=50, alpha=0.3, label='test')
        plt.plot(test_x.data.numpy(), test_pred_ofit.data.numpy(), 'r-', lw=3, label='overfitting')
        plt.plot(test_x.data.numpy(), test_pred_drop.data.numpy(), 'b--', lw=3, label='dropout(50%)')
        plt.text(0, -1.2, 'overfitting loss=%.4f' % loss_func(test_pred_ofit, test_y).data[0], fontdict={'size': 20, 'color':  'red'})
        plt.text(0, -1.5, 'dropout loss=%.4f' % loss_func(test_pred_drop, test_y).data[0], fontdict={'size': 20, 'color': 'blue'})
        plt.legend(loc='upper left'); plt.ylim((-2.5, 2.5));plt.pause(0.1)
        net_overfitting.train()
        net_dropped.train()
plt.ioff()
plt.show()

补充:pytorch避免过拟合-dropout丢弃法的实现

对于一个单隐藏层的多层感知机,其中输入个数为4,隐藏单元个数为5,且隐藏单元的计算表达式为:

开始实现drop丢弃法避免过拟合

定义dropout函数:

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
def dropout(X, drop_prob):
    X = X.float()
    assert 0 <= drop_prob <= 1
    keep_prob = 1 - drop_prob
    # 这种情况下把全部元素都丢弃
    if keep_prob == 0:
        return torch.zeros_like(X)
    mask = (torch.rand(X.shape) < keep_prob).float()
    return mask * X / keep_prob

定义模型参数:

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)
params = [W1, b1, W2, b2, W3, b3]

定义模型将全连接层和激活函数ReLU串起来,并对每个激活函数的输出使用丢弃法。

分别设置各个层的丢弃概率。通常的建议是把靠近输入层的丢弃概率设得小一点。

在这个实验中,我们把第一个隐藏层的丢弃概率设为0.2,把第二个隐藏层的丢弃概率设为0.5。

我们可以通过参数is_training来判断运行模式为训练还是测试,并只在训练模式下使用丢弃法。

drop_prob1, drop_prob2 = 0.2, 0.5
def net(X, is_training=True):
    X = X.view(-1, num_inputs)
    H1 = (torch.matmul(X, W1) + b1).relu()
    if is_training:  # 只在训练模型时使用丢弃法
        H1 = dropout(H1, drop_prob1)  # 在第一层全连接后添加丢弃层
    H2 = (torch.matmul(H1, W2) + b2).relu()
    if is_training:
        H2 = dropout(H2, drop_prob2)  # 在第二层全连接后添加丢弃层
    return torch.matmul(H2, W3) + b3
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        if isinstance(net, torch.nn.Module):
            net.eval() # 评估模式, 这会关闭dropout
            acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            net.train() # 改回训练模式
        else: # 自定义的模型
            if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                # 将is_training设置成False
                acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
            else:
                acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
        n += y.shape[0]
    return acc_sum / n

训练和测试模型:

num_epochs, lr, batch_size = 5, 100.0, 256
loss = torch.nn.CrossEntropyLoss()
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())
    
    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
    return train_iter, test_iter
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()
            
            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            
            l.backward()
            if optimizer is None:
                sgd(params, lr, batch_size)
            else:
                optimizer.step()  # “softmax回归的简洁实现”一节将用到
            
            
            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_iter, test_iter = load_data_fashion_mnist(batch_size)
train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 学会使用Python Configparser处理ini文件模块

    学会使用Python Configparser处理ini文件模块

    这篇文章主要为大家介绍了使用Python Configparser处理ini文件模块的学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • Python 5种常见字符串去除空格操作的方法

    Python 5种常见字符串去除空格操作的方法

    这篇文章主要给大家分享的是Python 5种常见字符串去除空格操作的方法,包括有strip()方法、rstrip()方法、replace()方法、join()方法+split()方法,下面文章是详细内容,需要的朋友可以参考一下
    2021-11-11
  • Python 实现递归法解决迷宫问题的示例代码

    Python 实现递归法解决迷宫问题的示例代码

    这篇文章主要介绍了Python 实现递归法解决迷宫问题的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-01-01
  • django自带serializers序列化返回指定字段的方法

    django自带serializers序列化返回指定字段的方法

    今天小编就为大家分享一篇django自带serializers序列化返回指定字段的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python+matplotlib实现折线图的美化

    Python+matplotlib实现折线图的美化

    这篇文章主要和大家分享一个非常有趣的Python教程—如何美化一个 matplotlib折线图。文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-05-05
  • python如何使用腾讯云发送短信

    python如何使用腾讯云发送短信

    这篇文章主要介绍了python如何使用腾讯云发送短信,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-09-09
  • 基于Python实现全自动二维码识别

    基于Python实现全自动二维码识别

    这篇文章主要为大家详细介绍了如何基于Python实现全自动二维码识别功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-11-11
  • Python学习笔记整理3之输入输出、python eval函数

    Python学习笔记整理3之输入输出、python eval函数

    这篇文章主要介绍了Python学习笔记整理3之输入输出、python eval函数的相关资料,需要的朋友可以参考下
    2015-12-12
  • Python+wxPython实现自动生成PPTX文档程序

    Python+wxPython实现自动生成PPTX文档程序

    这篇文章主要介绍了如何使用 wxPython 模块和 python-pptx 模块来编写一个程序,用于生成包含首页、内容页和感谢页的 PPTX 文档,感兴趣的小伙伴可以学习一下
    2023-08-08
  • python输出pdf文档的实例

    python输出pdf文档的实例

    今天小编就为大家分享一篇python输出pdf文档的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02

最新评论