解决Pytorch dataloader时报错每个tensor维度不一样的问题

 更新时间:2021年05月28日 11:35:02   作者:XJTU-Qidong  
这篇文章主要介绍了解决Pytorch dataloader时报错每个tensor维度不一样的问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

使用pytorch的dataloader报错:

RuntimeError: stack expects each tensor to be equal size, but got [2] at entry 0 and [1] at entry 1

1. 问题描述

报错定位:位于定义dataset的代码中

def __getitem__(self, index):
 ...
 return y    #此处报错

报错内容

File "D:\python\lib\site-packages\torch\utils\data\_utils\collate.py", line 55, in default_collate
return torch.stack(batch, 0, out=out)
RuntimeError: stack expects each tensor to be equal size, but got [2] at entry 0 and [1] at entry 1

把前一行的报错带上能够更清楚地明白问题在哪里.

2.问题分析

从报错可以看到,是在代码中执行torch.stack时发生了报错.因此必须要明白在哪里执行了stack操作.

通过调试可以发现,在通过loader加载一个batch数据的时候,是通过每一次给一个随机的index取出相应的向量.那么最终要形成一个batch的数据就必须要进行拼接操作,而torch.stack就是进行这里所说的拼接.

再来看看具体报的什么错: 说是stack的向量维度不同. 这说明在每次给出一个随机的index,返回的y向量的维度应该是相同的,而我们这里是不同的.

这样解决方法也就明确了:使返回的向量y的维度固定下来.

3.问题出处

为什么我会出现这样的一个问题,是因为我的特征向量中存在multi-hot特征.而为了节省空间,我是用一个列表存储这个特征的.示例如下:

feature=[[1,3,5],
  [0,2],
  [1,2,5,8]]

这就导致了我每次返回的向量的维度是不同的.因此可以采用向量补全的方法,把不同长度的向量补全成等长的.

 # 把所有向量的长度都补为6
 multi = np.pad(multi, (0, 6-multi.shape[0]), 'constant', constant_values=(0, -1))

4.总结

在构建dataset重写的__getitem__方法中要返回相同长度的tensor.

可以使用向量补全的方法来解决这个问题.

补充:pytorch学习笔记:torch.utils.data下的TensorDataset和DataLoader的使用

一、TensorDataset

对给定的tensor数据(样本和标签),将它们包装成dataset。注意,如果是numpy的array,或者Pandas的DataFrame需要先转换成Tensor。

'''
data_tensor (Tensor) - 样本数据
target_tensor (Tensor) - 样本目标(标签)
'''
 dataset=torch.utils.data.TensorDataset(data_tensor, 
                                        target_tensor)

下面举个例子:

我们先定义一下样本数据和标签数据,一共有1000个样本

import torch
import numpy as np
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, 
                       (num_examples, num_inputs)), 
                       dtype=torch.float)

labels = true_w[0] * features[:, 0] + \
         true_w[1] * features[:, 1] + true_b

labels += torch.tensor(np.random.normal(0, 0.01, 
                       size=labels.size()), 
                       dtype=torch.float)

print(features.shape)
print(labels.shape)

'''
输出:torch.Size([1000, 2])
     torch.Size([1000])
'''

然后我们使用TensorDataset来生成数据集

import torch.utils.data as Data
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)

二、DataLoader

数据加载器,组合数据集和采样器,并在数据集上提供单进程或多进程迭代器。它可以对我们上面所说的数据集Dataset作进一步的设置。

dataset (Dataset) – 加载数据的数据集。

batch_size (int, optional) – 每个batch加载多少个样本(默认: 1)。

shuffle (bool, optional) – 设置为True时会在每个epoch重新打乱数据(默认: False).

sampler (Sampler, optional) – 定义从数据集中提取样本的策略。如果指定,则shuffle必须设置成False。

num_workers (int, optional) – 用多少个子进程加载数据。0表示数据将在主进程中加载(默认: 0)

pin_memory:内存寄存,默认为False。在数据返回前,是否将数据复制到CUDA内存中。

drop_last (bool, optional) – 如果数据集大小不能被batch size整除,则设置为True后可删除最后一个不完整的batch。如果设为False并且数据集的大小不能被batch size整除,则最后一个batch将更小。(默认: False)

timeout:是用来设置数据读取的超时时间的,如果超过这个时间还没读取到数据的话就会报错。 所以,数值必须大于等于0。

data_iter=torch.utils.data.DataLoader(dataset, batch_size=1, 
                            shuffle=False, sampler=None, 
                            batch_sampler=None, num_workers=0, 
                            collate_fn=None, pin_memory=False, 
                            drop_last=False, timeout=0, 
                            worker_init_fn=None, 
                            multiprocessing_context=None)

上面对一些重要常用的参数做了说明,其中有一个参数是sampler,下面我们对它有哪些具体取值再做一下说明。只列出几个常用的取值:

torch.utils.data.sampler.SequentialSampler(dataset)

样本元素按顺序采样,始终以相同的顺序。

torch.utils.data.sampler.RandomSampler(dataset)

样本元素随机采样,没有替换。

torch.utils.data.sampler.SubsetRandomSampler(indices)

样本元素从指定的索引列表中随机抽取,没有替换。

下面就来看一个例子,该例子使用的dataset就是上面所生成的dataset

data_iter=Data.DataLoader(dataset, 
                          batch_size=10, 
                          shuffle=False,
sampler=torch.utils.data.sampler.RandomSampler(dataset))

for X, y in data_iter:
    print(X,"\n", y)
    break

'''
输出:
tensor([[-1.6338,  0.8451],
        [ 0.7245, -0.7387],
        [ 0.4672,  0.2623],
        [-1.9082,  0.0980],
        [-0.3881,  0.5138],
        [-0.6983, -0.4712],
        [ 0.1400,  0.7489],
        [-0.7761, -0.4596],
        [-2.2700, -0.2532],
        [-1.2641, -2.8089]]) 

tensor([-1.9451,  8.1587,  4.2374,  0.0519,  1.6843,  4.3970,  
        1.9311,  4.1999,0.5253, 11.2277])
'''

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python中的模块导入和读取键盘输入的方法

    Python中的模块导入和读取键盘输入的方法

    这篇文章主要介绍了Python中的模块导入和读取键盘输入的方法,相关import语句和input函数的使用是Python入门学习中的基础知识, 需要的朋友可以参考下
    2015-10-10
  • python文件处理--文件读写详解

    python文件处理--文件读写详解

    这篇文章主要介绍了Python 处理文件的几种方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-08-08
  • Python 如何调试程序崩溃错误

    Python 如何调试程序崩溃错误

    这篇文章主要介绍了Python 如何调试程序崩溃错误,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-08-08
  • python 字典的打印实现

    python 字典的打印实现

    这篇文章主要介绍了python 字典的打印实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • 分享Python获取本机IP地址的几种方法

    分享Python获取本机IP地址的几种方法

    这篇文章主要介绍了分享Python获取本机IP地址的几种方法,分享了使用专用网站、使用自带socket库、使用第三方netifaces库等方式们需要的小伙伴可以参考一下
    2022-03-03
  • 回归预测分析python数据化运营线性回归总结

    回归预测分析python数据化运营线性回归总结

    本文主要介绍了python数据化运营中的线性回归一般应用场景,常用方法,回归实现,回归评估指标,效果可视化等,并采用了回归预测分析的数据预测方法
    2021-08-08
  • Tensorflow分类器项目自定义数据读入的实现

    Tensorflow分类器项目自定义数据读入的实现

    这篇文章主要介绍了Tensorflow分类器项目自定义数据读入的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • Python使用内存缓存实例分享

    Python使用内存缓存实例分享

    Python中的内存缓存是一种将计算结果存储在内存中,以便在后续调用时快速获取结果的技术。通过使用装饰器和字典等数据结构,可以轻松实现内存缓存功能,提高程序的执行效率。
    2023-09-09
  • Python SMTP配置参数并发送邮件

    Python SMTP配置参数并发送邮件

    这篇文章主要介绍了Python SMTP配置参数并发送邮件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • 基于Python实现批量缩放图片(视频)尺寸

    基于Python实现批量缩放图片(视频)尺寸

    这篇文章主要为大家详细介绍了如何通过Python语言实现批量缩放图片(视频)尺寸的功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-03-03

最新评论