matplotlib画混淆矩阵与正确率曲线的实例代码
更新时间:2021年06月01日 09:02:09 作者:小鱼爱吃肉
混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,下面这篇文章主要给大家介绍了关于matplotlib画混淆矩阵与正确率曲线的相关资料,需要的朋友可以参考下
混淆矩阵
混淆矩阵(Confusion Matrix)是机器学习中用来总结分类模型预测结果的一个分析表,是模式识别领域中的一种常用的表达形式。它以矩阵的形式描绘样本数据的真实属性和分类预测结果类型之间的关系,是用来评价分类器性能的一种常用方法。
我们可以通过一个简单的例子来直观理解混淆矩阵
#!/usr/bin/python3.5 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['FangSong'] #可显示中文字符 plt.rcParams['axes.unicode_minus']=False classes = ['a','b','c','d','e','f','g'] confusion_matrix = np.array([(99,1,2,2,0,0,6),(1,98,7,6,2,1,1),(0,0,86,0,0,2,0),(0,0,0,86,1,0,0),(0,0,0,1,94,1,0),(0,1,5,1,0,96,8),(0,0,0,4,3,0,85)],dtype=np.float64) plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Oranges) #按照像素显示出矩阵 plt.title('混淆矩阵') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=-45) plt.yticks(tick_marks, classes) thresh = confusion_matrix.max() / 2. #iters = [[i,j] for i in range(len(classes)) for j in range((classes))] #ij配对,遍历矩阵迭代器 iters = np.reshape([[[i,j] for j in range(7)] for i in range(7)],(confusion_matrix.size,2)) for i, j in iters: plt.text(j, i, format(confusion_matrix[i, j]),fontsize=7) #显示对应的数字 plt.ylabel('真实类别') plt.xlabel('预测类别') plt.tight_layout() plt.show()
正确率曲线
fig ,ax= plt.subplots() plt.plot(np.arange(iterations), fig_acc,'b') plt.plot(np.arange(iterations), fig_realacc, 'r') ax.set_xlabel('迭代次数') ax.set_ylabel('正确率(%)') labels = ["训练正确率", "测试正确率"] # labels = [l.get_label() for l in lns] plt.legend( labels, loc=7) plt.show()
总结
到此这篇关于matplotlib画混淆矩阵与正确率曲线的文章就介绍到这了,更多相关matplotlib画混淆矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python matplotlib.pyplot.plot()参数用法
这篇文章主要介绍了python matplotlib.pyplot.plot()参数用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04python-for x in range的用法(注意要点、细节)
这篇文章主要介绍了python-for x in range的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2021-05-05
最新评论