Python函数装饰器的使用教程

 更新时间:2021年06月01日 11:39:10   作者:自动化代码美学  
在了解了Python函数装饰器基础知识和闭包之后,开始正式学习函数装饰器。感兴趣的朋友可以参考本文

典型的函数装饰器

以下示例定义了一个装饰器,输出函数的运行时间:

函数装饰器和闭包紧密结合,入参func代表被装饰函数,通过自由变量绑定后,调用函数并返回结果。

使用clock装饰器:

import time
from clockdeco import clock

@clock
def snooze(seconds):
    time.sleep(seconds)

@clock
def factorial(n):
    return 1 if n < 2 else n*factorial(n-1)

if __name__=='__main__':
    print('*' * 40, 'Calling snooze(.123)')
    snooze(.123)
    print('*' * 40, 'Calling factorial(6)')
    print('6! =', factorial(6))  # 6!指6的阶乘

输出结果:

这是装饰器的典型行为:把被装饰的函数换成新函数,二者接受相同的参数,而且返回被装饰的函数本该返回的值,同时还会做些额外操作。

值得注意的是factorial()是个递归函数,从结果来看,每次递归都用到了装饰器,打印了运行时间,这是因为如下代码:

@clock
def factorial(n):
    return 1 if n < 2 else n*factorial(n-1)

等价于:

def factorial(n):
    return 1 if n < 2 else n*factorial(n-1)
    
factorial = clock(factorial)

factorial引用的是clock(factorial)函数的返回值,也就是装饰器内部函数clocked,每次调用factorial(n),执行的都是clocked(n)。

叠放装饰器

@d1
@d2
def f():
    print("f")

等价于:

def f():
    print("f")

f = d1(d2(f))

参数化装饰器

怎么让装饰器接受参数呢?答案是:创建一个装饰器工厂函数,把参数传给它,返回一个装饰器,然后再把它应用到要装饰的函数上。

示例如下:

registry = set()

def register(active=True):
    def decorate(func):
        print('running register(active=%s)->decorate(%s)'
              % (active, func))
        if active:
            registry.add(func)
        else:
            registry.discard(func)

        return func
    return decorate

@register(active=False)
def f1():
    print('running f1()')

# 注意这里的调用
@register()
def f2():
    print('running f2()')

def f3():
    print('running f3()')

register是一个装饰器工厂函数,接受可选参数active默认为True,内部定义了一个装饰器decorate并返回。需要注意的是装饰器工厂函数,即使不传参数,也要加上小括号调用,比如@register()。

再看一个示例:

import time

DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}'

# 装饰器工厂函数
def clock(fmt=DEFAULT_FMT):
    # 真正的装饰器
    def decorate(func): 
        # 包装被装饰的函数
        def clocked(*_args):
            t0 = time.time()
            # _result是被装饰函数返回的真正结果
            _result = func(*_args)  
            elapsed = time.time() - t0
            name = func.__name__
            args = ', '.join(repr(arg) for arg in _args) 
            result = repr(_result) 
            # **locals()返回clocked的局部变量
            print(fmt.format(**locals()))  
            return _result 
        return clocked  
    return decorate 

if __name__ == '__main__':

    @clock()  
    def snooze(seconds):
        time.sleep(seconds)

    for i in range(3):
        snooze(.123)

这是给典型的函数装饰器添加了参数fmt,装饰器工厂函数增加了一层嵌套,示例中一共有3个def。

标准库中的装饰器

Python内置了三个用于装饰方法的函数:property、classmethod和staticmethod,这会在将来的文章中讲到。本文介绍functools中的三个装饰器:functools.wraps、functools.lru_cache和functools.singledispatch。

functools.wraps

Python函数装饰器在实现的时候,被装饰后的函数其实已经是另外一个函数了(函数名等函数属性会发生改变),为了不影响,Python的functools包中提供了一个叫wraps的装饰器来消除这样的副作用(它能保留原有函数的名称和函数属性)。

示例,不加wraps:

def my_decorator(func):
    def wrapper(*args, **kwargs):
        '''decorator'''
        print('Calling decorated function...')
        return func(*args, **kwargs)
    return wrapper

@my_decorator
def example():
    """Docstring"""
    print('Called example function')

print(example.__name__, example.__doc__)
# 输出wrapper decorator

加wraps:

import functools


def my_decorator(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        '''decorator'''
        print('Calling decorated function...')
        return func(*args, **kwargs)
    return wrapper

@my_decorator
def example():
    """Docstring"""
    print('Called example function')

print(example.__name__, example.__doc__)
# 输出example Docstring

functools.lru_cache

lru是Least Recently Used的缩写,它是一项优化技术,把耗时的函数的结果保存起来,避免传入相同的参数时重复计算。

示例:

import functools

from clockdeco import clock

@functools.lru_cache()
@clock
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-2) + fibonacci(n-1)

if __name__=='__main__':
    print(fibonacci(6))

优化了递归算法,执行时间会减半。

注意,lru_cache可以使用两个可选的参数来配置,它的签名如下:

functools.lru_cache(maxsize=128, typed=False)
  • maxsize:最大存储数量,缓存满了以后,旧的结果会被扔掉。
  • typed:如果设为True,那么会把不同参数类型得到的结果分开保存,即把通常认为相等的浮点数和整型参数(如1和1.0)区分开。

functools.singledispatch

Python3.4的新增语法,可以用来优化函数中的大量if/elif/elif。使用@singledispatch装饰的普通函数会变成泛函数:根据第一个参数的类型,以不同方式执行相同操作的一组函数。所以它叫做single dispatch,单分派。

根据多个参数进行分派,就是多分派了。

示例,生成HTML,显示不同类型的Python对象:

import html


def htmlize(obj):
    content = html.escape(repr(obj))
    return '<pre>{}</pre>'.format(content)

因为Python不支持重载方法或函数,所以就不能使用不同的签名定义htmlize的变体,只能把htmlize变成一个分派函数,使用if/elif/elif,调用专门的函数,比如htmlize_str、htmlize_int等。时间一长htmlize会变得很大,跟各个专门函数之间的耦合也很紧密,不便于模块扩展。

@singledispatch经过深思熟虑后加入到了标准库,来解决这类问题:

from functools import singledispatch
from collections import abc
import numbers
import html

@singledispatch
def htmlize(obj):
    # 基函数 这里不用写if/elif/elif来分派了
    content = html.escape(repr(obj))
    return '<pre>{}</pre>'.format(content)

@htmlize.register(str)
def _(text):
    # 专门函数
    content = html.escape(text).replace('\n', '<br>\n')
    return '<p>{0}</p>'.format(content)

@htmlize.register(numbers.Integral) 
def _(n):
    # 专门函数
    return '<pre>{0} (0x{0:x})</pre>'.format(n)

@htmlize.register(tuple)
@htmlize.register(abc.MutableSequence)
def _(seq):
    # 专门函数
    inner = '</li>\n<li>'.join(htmlize(item) for item in seq)
    return '<ul>\n<li>' + inner + '</li>\n</ul>'

@singledispatch装饰了基函数。专门函数使用@<<base_function>>.register(<<type>>)装饰,它的名字不重要,命名为_,简单明了。

这样编写代码后,Python会根据第一个参数的类型,调用相应的专门函数。

小结

本文首先介绍了典型的函数装饰器:把被装饰的函数换成新函数,二者接受相同的参数,而且返回被装饰的函数本该返回的值,同时还会做些额外操作。接着介绍了装饰器的两个高级用法:叠放装饰器和参数化装饰器,它们都会增加函数的嵌套层级。最后介绍了3个标准库中的装饰器:保留原有函数属性的functools.wraps、缓存耗时的函数结果的functools.lru_cache和优化if/elif/elif代码的functools.singledispatch。

参考资料:

《流畅的Python》https://github.com/fluentpython/example-code/tree/master/07-closure-deco

https://blog.csdn.net/liuzonghao88/article/details/103586634

以上就是Python函数装饰器高级用法的详细内容,更多关于Python函数装饰器用法的资料请关注脚本之家其它相关文章!

相关文章

  • Python googletrans库使用示例详解

    Python googletrans库使用示例详解

    googletrans是一个基于谷歌翻译API的Python库,支持多种语言的自动检测和翻译,提供了translate和detect方法,用于翻译文本和检测文本语言,通过简单的命令即可安装使用,适合需要实现多语言翻译功能的开发者
    2024-09-09
  • django admin 后台实现三级联动的示例代码

    django admin 后台实现三级联动的示例代码

    这篇文章主要介绍了django admin 后台实现三级联动的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-06-06
  • python列表每个元素同增同减和列表元素去空格的实例

    python列表每个元素同增同减和列表元素去空格的实例

    今天小编就为大家分享一篇python列表每个元素同增同减和列表元素去空格的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python读取txt文件并逐行输出字符串

    python读取txt文件并逐行输出字符串

    Python提供了简单且方便的方法来读取txt文件,使用open()函数和readlines()方法逐行输出文件中的字符串内容,我们可以轻松地读取文件内容,并通过循环遍历的方式逐行处理,读取txt文件的方法在各种应用场景中非常常见,可以用于数据分析、文本处理、日志分析等
    2023-10-10
  • python自动化实现登录获取图片验证码功能

    python自动化实现登录获取图片验证码功能

    这篇文章主要介绍了python自动化实现登录获取图片验证码功能,本文通过实例截图的形式给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-11-11
  • python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)

    python接口自动化(十七)--Json 数据处理---一次爬坑记(详解)

    这篇文章主要介绍了python Json 数据处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • 利用Python提取PDF文本的简单方法实例

    利用Python提取PDF文本的简单方法实例

    日常工作中我们经常会用到pdf格式的文件,大多数情况下是浏览或者编辑pdf信息,但有时候需要提取pdf中的文本,下面这篇文章主要给大家介绍了关于利用Python提取PDF文本的简单方法,需要的朋友可以参考下
    2022-07-07
  • 已安装Pytorch却提示no moudle named 'torch'(没有名称为torch的模块)

    已安装Pytorch却提示no moudle named 'torch'(没有名称为torch

    这篇文章主要给大家介绍了关于已安装Pytorch却提示no moudle named 'torch'(没有名称为torch的模块)的相关资料,当提示"No module named 'torch'"时,可能是由于安装的Pytorch版本与当前环境不匹配导致的,需要的朋友可以参考下
    2023-11-11
  • Python实现字符串模糊匹配方式

    Python实现字符串模糊匹配方式

    这篇文章主要介绍了Python实现字符串模糊匹配方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • Python 比较文本相似性的方法(difflib,Levenshtein)

    Python 比较文本相似性的方法(difflib,Levenshtein)

    今天小编就为大家分享一篇Python 比较文本相似性的方法(difflib,Levenshtein),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10

最新评论