pytorch 如何用cuda处理数据
1 设置GPU的一些操作
设置在os端哪些GPU可见,如果不可见,那肯定是不能够调用的~
import os GPU = '0,1,2' os.environ['CUDA_VISIBLE_DEVICES'] =GPU
torch.cuda.is_available()查看cuda是否可用。
if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True ''' 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率; 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置, 这样反而会降低运行效率。 这下就清晰明了很多了。 Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。 torch.backends.cudnn.benchmark = True 如果想要避免这种结果波动,设置: torch.backends.cudnn.deterministic = True '''
这句话也很常见,设置默认的device,优先gpu。
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cpu挪到gpu
# 也可以是 device = torch.device('cuda:0') device = torch.device('cuda') a = torch.tensor([1,2,3]) b = a.to(device ) print(a) print(b)
out:
tensor([1, 2, 3])
tensor([1, 2, 3], device='cuda:0')
判断变量是否基于GPU。
a.is_cuda
查看有几个可用GPU。
torch.cuda.device_count()
查看GPU算力
# 返回gpu最大和最小计算能力,是一个tuple torch.cuda.get_device_capability()
设置默认哪一个GPU运算。
# 里面输入int类型的数字 torch.cuda.set_device()
抓取指定gpu的全名。
if torch.cuda.is_available(): device = torch.device('cuda') print('Using GPU: ', torch.cuda.get_device_name(0))
out:
'GeForce GTX 1050'
2 直接在gpu创建
方法一:
a = torch.ones(3,4,device="cuda") print(a)
out:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], device='cuda:0')
方法二:
a = torch.cuda.FloatTensor(3, 4) print(a)
out:
tensor([[-1., -1., -1., -1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.]], device='cuda:0')
3 从cpu转移到gpu
方法一:tensor.to()
a = torch.ones(3,4) b = a.to("cuda") print(a) print(b)
out:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], device='cuda:0')
注意:.to()不仅可以转移device,还可以修改数据类型,比如:a.to(torch.double)
方法二:tensor.cuda()
a = torch.tensor([1., 2.]).cuda()
方法三:tensor.type()
dtype = torch.cuda.FloatTensor x = torch.rand(2,2).type(dtype)
方法四:torch.from_numpy(np_labels).cuda()
wm_labels = torch.from_numpy(np_labels).cuda()
4 在cuda中训练模型
在默认情况下,模型参数的优化(即训练)是在cpu上进行的,如果想要挪到GPU,得做如下修改:
import torch.nn as nn #假设前面已经定义好了模型 #创建模型 Hidnet = UnetGenerator_mnist() #把模型放入GPU Hidnet = nn.DataParallel(Hidnet.cuda()) #查看模型参数 list(Hidnet.parameters())[0]
out:
Parameter containing:
tensor([[[[ 0.1315, 0.0562, 0.1186],
[-0.1158, 0.1394, -0.0399],
[ 0.1728, 0.1051, -0.1034]],[[ 0.1702, -0.1208, -0.1134],
[-0.1449, 0.1912, 0.1727],
[ 0.1562, 0.1601, 0.1055]],[[ 0.1031, -0.0062, -0.0068],
[-0.0453, 0.1150, 0.0366],
[ 0.0680, -0.1234, -0.0988]]]], device='cuda:0', requires_grad=True)
可以看到 device=‘cuda:0' 啦
pytorch 查看cuda 版本
由于pytorch的whl 安装包名字都一样,所以我们很难区分到底是基于cuda 的哪个版本。
有一条指令可以查看
import torch print(torch.version.cuda)
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
- python windows安装cuda+cudnn+pytorch教程
- 显卡驱动CUDA 和 pytorch CUDA 之间的区别
- pytorch cuda安装报错的解决方法
- PyTorch中的CUDA的操作方法
- PyTorch device与cuda.device用法介绍
- 将pytorch的网络等转移到cuda
- pytorch中.to(device) 和.cuda()的区别说明
- PyTorch CUDA环境配置及安装的步骤(图文教程)
- Linux安装Pytorch1.8GPU(CUDA11.1)的实现
- 详解win10下pytorch-gpu安装以及CUDA详细安装过程
- Pytorch使用CUDA流(CUDA stream)的实现
相关文章
解决遇到:PytorchStreamReader failed reading zip&n
本文针对"PytorchStreamReaderfailedreadingziparchive:failedfindingcentral"错误提出解决方案,包括检查文件完整性、文件路径,尝试更新PyTorch版本,检查压缩文件格式,代码问题,或寻求技术支持等,希望这些经验能给遇到同样问题的人一个参考2024-09-09Python实现获取nginx服务器ip及流量统计信息功能示例
这篇文章主要介绍了Python实现获取nginx服务器ip及流量统计信息功能,涉及Python针对nginx服务器信息操作相关实现技巧,需要的朋友可以参考下2018-05-05解决在keras中使用model.save()函数保存模型失败的问题
这篇文章主要介绍了解决在keras中使用model.save()函数保存模型失败的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-05-05Pycharm debug程序,跳转至指定循环条件/循环次数问题
这篇文章主要介绍了Pycharm debug程序,跳转至指定循环条件/循环次数问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-08-08
最新评论