Python量化交易实战之使用Resample函数转换“日K”数据

 更新时间:2021年06月02日 11:26:22   作者:《虚幻私塾》  
resample函数是Python数据分析库Pandas的方法函数,它主要用于转换时间序列的频次,今天通过本文给大家分享python使用Resample函数转换时间序列的相关知识,感兴趣的朋友一起看看吧

使用Resample函数转换时间序列

 一、什么是resample函数?

它是Python数据分析库Pandas的方法函数。

它主要用于转换时间序列的频次。可以做一些统计汇总的工作。

什么叫转换时间序列的频次呢?

比如说股票的日k和周k,

假设我只能获取到股票日K的数据,比如说11月1号到11月5号,那怎么样将它转换为以周为单位的K线呢?

日期 周期 开盘价 收盘价 最高价 最低价
11月1号 周一 1.11 1.11 1.11 1.12
11月2号 周二 1.12 1.12 1.11 1.12
11月3号 周三 1.13 1.13 1.11 1.12
11月4号 周四 1.15 1.14 1.11 1.12
11月5号 周五 1.14 1.15 1.11 1.12

首先我们要明确,周K的开盘、收盘、最高、最低是什么。每周的开盘价是当周第一天的开盘价,收盘价是当周最后一天的收盘价,它的最高价是这周最高的价格,最低价是本周所有最低价中最低的价格。所以你去看炒股平台,它的周k都是以周五的交易日为记录的时间点位置。开盘、收盘、最高、最低是按照我刚刚讲解的这个规则来计算的。至于月K、年K的选取规则也是一样的。月K的周期是一个月,年K的周期是一年。

这个计算准确性你也可以通过网上的数据进行验证。这个计算规则,包括开盘、收盘、最高、最低的计算,收拾resample函数可以做到的事情。此外Resample还有个功能,就是做统计汇总,比如说我想计算一支股票总的周成交量,就可以使用Resample.sum函数去把周一到周五的成交量加起来。

为了方便大家记忆 ,你也可以把resample理解为Excel表格中的透视表功能。你可以按照日期做各种筛选和汇总统计的。最重要的是他可以按照日期。

二、实战Resample函数

因为这2节课还是一些比较基础的部分,所以还没有做模块化的内容。

我们会在创建股票数据库的时候 来做真正的模块化的工作。到这里都是初级的脚本的形式。先提前说下。

1.日K 转换为 周K

1.1函数文档学习

谷歌搜索Pandas Resample:第一个链接就是这个函数的官方文档

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.resample.html

这里有介绍:Resample是属于Pandas DataFrame下面的方法。这里有关于参数的解释。

这里我们只对2个常用参数讲解,一个是rule,另一个是closed。

  • rule表示的是你放一个什么样的周期性指标在里面,用m代表Month,Y代表Year,w代表Week,
  • closed代表你取哪一个分界线,举例来说,比如说我把日k转换为周k,到底我是取周一为分界线还是周五为分界线呢?这就是通过closed来确定的。

这里有它的例子:

>>>index = pd.date_range('1/1/2000', periods=9, freq='T')
>>>series = pd.Series(range(9), index=index)
>>>series
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64

这里首先创建了一个时间序列的DataFrame,就是这个series变量。你可以理解为它是一个只有一个字段的表格样式。接着往下看:

>>>series.resample('3T').sum()
2000-01-01 00:00:00     3
2000-01-01 00:03:00    12
2000-01-01 00:06:00    21
Freq: 3T, dtype: int64

这里使用了Resample方法,3T就是3分钟,T表示分钟。sum()就是汇总,也就是针对这一列数据进行汇总。

也就是说,每3分钟统计依次。注意到,这个时间序列汇总的时间取的值是3分钟的第一分钟。如果我想取时间周期的最后一分钟,可以将label的值改为“right":

>>>series.resample('3T', label='right').sum()
2000-01-01 00:03:00     3
2000-01-01 00:06:00    12
2000-01-01 00:09:00    21
Freq: 3T, dtype: int64

1.2实战

获取日K真实的数据:

#获取日k
df = get_price("000001.XSHG", end_date='2021-05-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])  
print(df)

可以看到获取到了4月28号5月28号的所有数据。为了更方便理解 我们再添加一列数据,就是当前日期是星期几的列。

#获取日k
df = get_price("000001.XSHG", end_date='2021-05-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])  
df['weekday']=df.index.weekday
print(df)

这里0代表周一,这里如何转换为按“”统计呢

#获取周k
import pandas as pd
df_week = pd.DataFrame()
df_week = df['open'].resample('W').first()
print(df_week)

可以看到这里的2021-05-30是一个礼拜的最后一天。它对应的开盘价确实是这个数字。说明我们计算的周K数据是正确的。

收盘价就是每周收盘价最后一天的数据。

最高价就是每周收盘价的最大值。

最低价就是每周收盘价的最小值。

#获取周k
import pandas as pd
df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('W').first()
df_week['close'] = df['close'].resample('W').last()
df_week['high'] = df['high'].resample('W').max()
df_week['low'] = df['low'].resample('W').min()
print(df_week)

对比数据,close是最后一天的收盘价的数据。high是当前周的每天的最高价的最高价。low是当前周的每天的最低价的最低价。

我们通过不到10行代码就能将日K的数据转换为周K的数据。

2.汇总统计功能(统计月成交量、成交额)

汇总成交量和成交额

我想要把volume(成交量)和money(成交额)转换为总成交量总成交额

#获取周k
import pandas as pd
df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('W').first()
df_week['close'] = df['close'].resample('W').last()
df_week['high'] = df['high'].resample('W').max()
df_week['low'] = df['low'].resample('W').min()
df_week['volume(sum)'] = df['volume'].resample('W').sum()
df_week['money(sum)'] = df['money'].resample('W').sum()
print(df_week)

3.日K 转换为 月K

假设我有一年的数据,如果想转换为月K应该怎么转?

只需要改2个地方:

  • 添加start_date获取到一整年的数据
  • resample的参数改为M即可,M代表Month
#获取日k
df = get_price("000001.XSHG", end_date='2021-05-30 14:00:00', start_date='2020-05-30', frequency='1d', fields=['open','close','high','low','volume','money'])  
df['weekday']=df.index.weekday
print(df)

#获取周k
import pandas as pd
df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('M').first()
df_week['close'] = df['close'].resample('M').last()
df_week['high'] = df['high'].resample('M').max()
df_week['low'] = df['low'].resample('M').min()
print(df_week)

以上就是Python量化交易实战之使用Resample函数转换“日K”数据的详细内容,更多关于Python Resample函数转换“日K”数据的资料请关注脚本之家其它相关文章!

相关文章

  • 详解python读取和输出到txt

    详解python读取和输出到txt

    这篇文章主要介绍了python读取和输出到txt,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • Python编程产生非均匀随机数的几种方法代码分享

    Python编程产生非均匀随机数的几种方法代码分享

    这篇文章主要介绍了Python编程产生非均匀随机数的几种方法代码分享,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Python实现通过文件路径获取文件hash值的方法

    Python实现通过文件路径获取文件hash值的方法

    这篇文章主要介绍了Python实现通过文件路径获取文件hash值的方法,结合实例形式分析了Python针对文件进行hash运算的实现方法与相关注意事项,需要的朋友可以参考下
    2017-04-04
  • Python利用pyodbc库将文件信息插入Access数据库

    Python利用pyodbc库将文件信息插入Access数据库

    在日常编程工作中,我们经常需要处理文件和文件夹,所以本文将介绍如何使用Python编程语言和wxPython库创建一个简单的文件浏览器界面,使用户能够选择文件夹并将文件信息插入到Access数据库中,需要的可以参考下
    2023-08-08
  • Python实现定时任务的八种方案详解

    Python实现定时任务的八种方案详解

    在日常工作中,我们常常会用到需要周期性执行的任务,我们可以用Python直接实现这一功能。本文整理的是常见的Python定时任务的八种实现方式,需要的朋友可以参考一下
    2022-02-02
  • python中的annotate函数使用

    python中的annotate函数使用

    这篇文章主要介绍了python中的annotate函数使用方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • 使用python获取电脑的磁盘信息方法

    使用python获取电脑的磁盘信息方法

    今天小编就为大家分享一篇使用python获取电脑的磁盘信息方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • python使用递归实现斐波那契数列的示例详解

    python使用递归实现斐波那契数列的示例详解

    这篇文章主要给大家介绍了python使用递归实现斐波那契数列的示例,文中通过示例代码介绍的非常详细,对大家的学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起来学习吧
    2024-01-01
  • 使用pytorch加载并读取COCO数据集的详细操作

    使用pytorch加载并读取COCO数据集的详细操作

    这篇文章主要介绍了使用pytorch加载并读取COCO数据集,基础知识包括元祖、字典、数组,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • python之如何进行去重问题

    python之如何进行去重问题

    这篇文章主要介绍了python之如何进行去重问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06

最新评论