浅谈JVM中的JOL
JOL简介
JOL的全称是Java Object Layout。是一个用来分析JVM中Object布局的小工具。包括Object在内存中的占用情况,实例对象的引用情况等等。
JOL可以在代码中使用,也可以独立的以命令行中运行。命令行的我这里就不具体介绍了,今天主要讲解怎么在代码中使用JOL。
使用JOL需要添加maven依赖:
<dependency> <groupId>org.openjdk.jol</groupId> <artifactId>jol-core</artifactId> <version>0.10</version> </dependency>
添加完依赖,我们就可以使用了。
使用JOL分析VM信息
首先我们看下怎么使用JOL来分析JVM的信息,代码非常非常简单:
log.info("{}", VM.current().details());
输出结果:
# Running 64-bit HotSpot VM.
# Using compressed oop with 3-bit shift.
# Using compressed klass with 3-bit shift.
# WARNING | Compressed references base/shifts are guessed by the experiment!
# WARNING | Therefore, computed addresses are just guesses, and ARE NOT RELIABLE.
# WARNING | Make sure to attach Serviceability Agent to get the reliable addresses.
# Objects are 8 bytes aligned.
# Field sizes by type: 4, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]
# Array element sizes: 4, 1, 1, 2, 2, 4, 4, 8, 8 [bytes]
上面的输出中,我们可以看到:Objects are 8 bytes aligned,这意味着所有的对象分配的字节都是8的整数倍。
使用JOL分析String
上面的都不是重点,重点是怎么使用JOL来分成class和Instance信息。
其实java中的对象,除了数组,其他对象的大小应该都是固定的。我们先举一个最最常用的字符串来看一下:
log.info("{}",ClassLayout.parseClass(String.class).toPrintable());
上面的例子中,我们使用ClassLayout来解析一个String类,先看下输出:
[main] INFO com.flydean.JolUsage - java.lang.String object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
0 12 (object header) N/A
12 4 byte[] String.value N/A
16 4 int String.hash N/A
20 1 byte String.coder N/A
21 1 boolean String.hashIsZero N/A
22 2 (loss due to the next object alignment)
Instance size: 24 bytes
Space losses: 0 bytes internal + 2 bytes external = 2 bytes total
先解释下各个字段的含义,OFFSET是偏移量,也就是到这个字段位置所占用的byte数,SIZE是后面类型的大小,TYPE是Class中定义的类型,DESCRIPTION是类型的描述,VALUE是TYPE在内存中的值。
分析下上面的输出,我们可以得出,String类中占用空间的有5部分,第一部分是对象头,占12个字节,第二部分是byte数组,占用4个字节,第三部分是int表示的hash值,占4个字节,第四部分是byte表示的coder,占1个字节,最后一个是boolean表示的hashIsZero,占1个字节,总共22个字节。但是JVM中对象内存的分配必须是8字节的整数倍,所以要补全2字节,最后String类的总大小是24字节。
如果字符串里面存了很多很多数据,那么对象的大小还是24字节吗?
这个问题问得非常有水平,下面我们就来看看怎么使用JOL来解析String对象的信息:
log.info("{}",ClassLayout.parseInstance("www.flydean.com").toPrintable());
上面的例子,我们使用了parseInstance而不是parseClass来解析String实例的信息。
输出结果:
[main] INFO com.flydean.JolUsage - java.lang.String object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
0 4 (object header) 01 c2 63 a2 (00000001 11000010 01100011 10100010) (-1570520575)
4 4 (object header) 0c 00 00 00 (00001100 00000000 00000000 00000000) (12)
8 4 (object header) 77 1a 06 00 (01110111 00011010 00000110 00000000) (399991)
12 4 byte[] String.value [119, 119, 119, 46, 102, 108, 121, 100, 101, 97, 110, 46, 99, 111, 109]
16 4 int String.hash 0
20 1 byte String.coder 0
21 1 boolean String.hashIsZero false
22 2 (loss due to the next object alignment)
Instance size: 24 bytes
Space losses: 0 bytes internal + 2 bytes external = 2 bytes total
先看结论,和String Class一样,这个String对象确实只占24字节。
实例的解析和Class解析的结果差不多,因为是实例对象,所以多了VALUE的值。
我们知道在JDK9之后,String的底层存储从Char[] 变成了Byte[]用于节约String的存储空间。上面的输出中,我们可以看到String.value值确实很长,但是保存在String中的只是Byte数组的引用地址,所以4字节就够了。
使用JOL分析数组
虽然String的大小是不变的,但是其底层数组的大小是可变的。我们再举个例子:
log.info("{}",ClassLayout.parseClass(byte[].class).toPrintable());
输出结果:
[main] INFO com.flydean.JolUsage - [B object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
0 16 (object header) N/A
16 0 byte [B.<elements> N/A
Instance size: 16 bytes
Space losses: 0 bytes internal + 0 bytes external = 0 bytes total
类的解析结果,可以看到Byte数组占16个字节。
再看实例的情况:
log.info("{}",ClassLayout.parseInstance("www.flydean.com".getBytes()).toPrintable());
输出结果:
[main] INFO com.flydean.JolUsage - [B object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
0 4 (object header) 01 00 00 00 (00000001 00000000 00000000 00000000) (1)
4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0)
8 4 (object header) 22 13 07 00 (00100010 00010011 00000111 00000000) (463650)
12 4 (object header) 0f 00 00 00 (00001111 00000000 00000000 00000000) (15)
16 15 byte [B.<elements> N/A
31 1 (loss due to the next object alignment)
Instance size: 32 bytes
Space losses: 0 bytes internal + 1 bytes external = 1 bytes total
可以看到数组的大小真的变化了,这次变成了32字节。
使用JOL分析自动装箱
我们知道,java中的基本类型都有一个和它对于的Object类型,比如long和Long,下面我们来分析下他们两个在JVM中的内存区别:
log.info("{}",ClassLayout.parseClass(Long.class).toPrintable());
输出结果:
[main] INFO com.flydean.JolUsage - java.lang.Long object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
0 12 (object header) N/A
12 4 (alignment/padding gap)
16 8 long Long.value N/A
Instance size: 24 bytes
Space losses: 4 bytes internal + 0 bytes external = 4 bytes total
可以看到1个Long对象是占24个字节的,但是其中真正存储long的value只占8个字节。
看一个实例:
log.info("{}",ClassLayout.parseInstance(1234567890111112L).toPrintable());
输出结果:
[main] INFO com.flydean.JolUsage - java.lang.Long object internals:
OFFSET SIZE TYPE DESCRIPTION VALUE
0 4 (object header) 05 00 00 00 (00000101 00000000 00000000 00000000) (5)
4 4 (object header) 00 00 00 00 (00000000 00000000 00000000 00000000) (0)
8 4 (object header) 9a 15 00 00 (10011010 00010101 00000000 00000000) (5530)
12 4 (alignment/padding gap)
16 8 long Long.value 1234567890111112
Instance size: 24 bytes
Space losses: 4 bytes internal + 0 bytes external = 4 bytes total
使用JOL分析引用关系
上面我们使用JOL分析的是class内部的空间使用情况,那么如果有外部引用可不可以分析呢?
HashMap hashMap= new HashMap(); hashMap.put("flydean","www.flydean.com"); log.info("{}", GraphLayout.parseInstance(hashMap).toPrintable());
上面我们使用一个不同的layout:GraphLayout,它可以用来分析外部引用情况。
输出结果:
[main] INFO com.flydean.JolUsage - java.util.HashMap@57d5872cd object externals:
ADDRESS SIZE TYPE PATH VALUE
7875f9028 48 java.util.HashMap (object)
7875f9058 24 java.lang.String .table[14].key (object)
7875f9070 24 [B .table[14].key.value [102, 108, 121, 100, 101, 97, 110]
7875f9088 24 java.lang.String .table[14].value (object)
7875f90a0 32 [B .table[14].value.value [119, 119, 119, 46, 102, 108, 121, 100, 101, 97, 110, 46, 99, 111, 109]
7875f90c0 80 [Ljava.util.HashMap$Node; .table [null, null, null, null, null, null, null, null, null, null, null, null, null, null, (object), null]
7875f9110 32 java.util.HashMap$Node .table[14] (object)
从结果我们可以看到HashMap本身是占用48字节的,它里面又引用了占用24字节的key和value。
总结
使用JOL可以分析java类和对象,这个对于我们对JVM和java源代码的理解和实现都是非常有帮助的。
以上就是浅谈JVM中的JOL的详细内容,更多关于JVM中的JOL的资料请关注脚本之家其它相关文章!
相关文章
Java中BigDecimal,DateFormatter 和迭代器的"陷阱"
这篇文章主要介绍了Java中BigDecimal,DateFormatter 和迭代器的"陷阱",文章围绕主题展开详细的内容介绍,感兴趣的小伙伴可以参考一下2022-06-06
最新评论