解决Pytorch在测试与训练过程中的验证结果不一致问题
引言
今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题。
现象
此前的错误代码是
input_cpu = torch.ones((1, 2, 160, 160)) target_cpu =torch.ones((1, 2, 160, 160)) target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda() model.set_input_2(input_gpu, target_gpu) model.eval() model.forward()
应该改为
input_cpu = torch.ones((1, 2, 160, 160)) target_cpu =torch.ones((1, 2, 160, 160)) target_gpu, input_gpu = target_cpu.cuda(), input_cpu.cuda() model.set_input_2(input_gpu, target_gpu) # 先forward再eval model.forward() model.eval()
当时有个疑虑,为什么要在forward后面再加eval(),查了下相关资料,主要是在BN层以及Dropout的问题。
当使用eval()时,模型会自动固定BN层以及Dropout,选取训练好的值,否则则会取平均,可能导致生成的图片颜色失真。
PyTorch进行训练和测试时一定注意要把实例化的model指定train/eval
使用PyTorch进行训练和测试时一定注意要把实例化的model指定train/eval,eval()时,框架会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大!!!!!!
eg:
Class Inpaint_Network() ...... Model = Inpaint_Nerwoek() #train: Model.train(mode=True) ..... #test: Model.eval()
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
tensorflow可视化Keras框架中Tensorboard使用示例
这篇文章主要为大家介绍了tensorflow可视化Keras框架中Tensorboard使用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-05-05python处理multipart/form-data的请求方法
今天小编就为大家分享一篇python处理multipart/form-data的请求方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2018-12-12
最新评论