python opencv旋转图片的使用方法

 更新时间:2021年06月04日 10:22:55   作者:uncle_ll  
在图像处理中,有的时候会有对图片进行角度旋转的处理,尤其是在计算机视觉中对于图像扩充,旋转角度扩充图片是一种常见的处理。本文就详细的介绍一下,感兴趣的可以了解一下

背景

在图像处理中,有的时候会有对图片进行角度旋转的处理,尤其是在计算机视觉中对于图像扩充,旋转角度扩充图片是一种常见的处理。这种旋转图片的应用场景也比较多,比如用户上传图片是竖着的时候,不好进行处理,也需要对其进行旋转,以便后续算法处理。常见的旋转处理有两种方式,一种是转化为numpy矩阵后,对numpy矩阵进行处理,另外一种是使用opencv自带的函数进行各种变换处理,以实现旋转角度的结果。

原始图像:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Fo40V1TN-1592548330569)(C:\Users\DELL-3020\AppData\Roaming\Typora\typora-user-images\image-20200618180728108.jpg)]

opencv函数

旋转中常用的函数有以下几个函数

cv2.transpose: 对图像矩阵进行转置处理

img = cv2.imread(origin_img_path)
img_transpose = cv2.transpose(img)
cv2.imshow('transpose', img_transpose)
cv2.waitKey(0)

在这里插入图片描述

cv2.flip : 对图像矩阵进行翻转处理,参数可以设置为1,0,-1,分别对应着水平翻转、垂直翻转、水平垂直翻转。

img = cv2.imread(origin_img_path)
img_flip = cv2.flip(img, 1)
cv2.imshow('flip', img_flip)
cv2.waitKey(0)

在这里插入图片描述

cv2.getRotationMatrix2D: 构建旋转矩阵M,后续旋转时候只需要与旋转矩阵进行乘积即可完成旋转操作

旋转矩阵M

img

img = cv2.imread(origin_img_path)
rows, cols = img.shape
# 这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
# 可以通过设置旋转中心,缩放因子以及窗口大小来防止旋转后超出边界的问题
M = cv2.getRotationMatrix2D((cols/2,rows/2),45,0.6)

cv2.warpAffine: 对图像进行仿射变换,一般进行平移或者旋转操作

img = cv2.imread(origin_img_path)
cv2.warpAffine(img, M,(lengh,lengh),borderValue=(255,255,255))  # M为上面的旋转矩阵

numpy函数

numpy实现旋转一般是使用numpy.rot90对图像进行90度倍数的旋转操作

官方介绍:

numpy.rot90(m, k=1, axes=(0, 1))[source]

Rotate an array by 90 degrees in the plane specified by axes.

Rotation direction is from the first towards the second axis.

k: Number of times the array is rotated by 90 degrees.

关键参数k表示旋转90度的倍数,k的取值一般为1、2、3,分别表示旋转90度、180度、270度;k也可以取负数,-1、-2、-3。k取正数表示逆时针旋转,取负数表示顺时针旋转。

旋转90度

逆时针

  • 使用opencv函数的转置操作+翻转操作实现旋转
  • 使用numpy.rot90实现
def rotateAntiClockWise90(img_file):  # 逆时针旋转90度
	img = cv2.imread(img_file)
    trans_img = cv2.transpose(img)
    img90 = cv2.flip(trans_img, 0)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90
    
def totateAntiClockWise90ByNumpy(img_file):  # np.rot90(img, -1) 逆时针旋转90度
    img = cv2.imread(img_file)
    img90 = np.rot90(img, -1)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

在这里插入图片描述

顺时针

def rotateClockWise90(self, img_file):
	img = cv2.imread(img_file)
    trans_img = cv2.transpose( img )
    img90 = cv2.flip(trans_img, 1)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

def totateClockWise90ByNumpy(img_file):  # np.rot90(img, 1) 顺时针旋转90度
    img = cv2.imread(img_file)
    img90 = np.rot90(img, 1)
    cv2.imshow("rotate", img90)
    cv2.waitKey(0)
    return img90

在这里插入图片描述

旋转180度、270度

使用numpy.rot90实现旋转180度、270度

180度

img180 = np.rot90(img, 2)
cv2.imshow("rotate", img180)
cv2.waitKey(0)

在这里插入图片描述

270 度

img270 = np.rot90(img, 3)
cv2.imshow("rotate", img270)
cv2.waitKey(0)

在这里插入图片描述

旋转任意角度,以任意色值填充背景

import cv2
from math import *
import numpy as np
 
# 旋转angle角度,缺失背景白色(255, 255, 255)填充
def rotate_bound_white_bg(image, angle):
    # grab the dimensions of the image and then determine the
    # center
    (h, w) = image.shape[:2]
    (cX, cY) = (w // 2, h // 2)
 
    # grab the rotation matrix (applying the negative of the
    # angle to rotate clockwise), then grab the sine and cosine
    # (i.e., the rotation components of the matrix)
    # -angle位置参数为角度参数负值表示顺时针旋转; 1.0位置参数scale是调整尺寸比例(图像缩放参数),建议0.75
    M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])
 
    # compute the new bounding dimensions of the image
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))
 
    # adjust the rotation matrix to take into account translation
    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY
 
    # perform the actual rotation and return the image
    # borderValue 缺失背景填充色彩,此处为白色,可自定义
    return cv2.warpAffine(image, M, (nW, nH),borderValue=(255,255,255))
    # borderValue 缺省,默认是黑色(0, 0 , 0)
    # return cv2.warpAffine(image, M, (nW, nH))
 
img = cv2.imread("dog.png")
imgRotation = rotate_bound_white_bg(img, 45)
 
cv2.imshow("img",img)
cv2.imshow("imgRotation",imgRotation)
cv2.waitKey(0)

45度

在这里插入图片描述

60度

在这里插入图片描述

参考

cv2.getRotationMatrix2D博客介绍

cv2.warpAffine 博客介绍

numpy.rot90

旋转任意角度

到此这篇关于python opencv旋转图片的使用方法的文章就介绍到这了,更多相关python opencv旋转图片内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • OpenCV学习之图像的分割与修复详解

    OpenCV学习之图像的分割与修复详解

    图像分割本质就是将前景目标从背景中分离出来。在当前的实际项目中,应用传统分割的并不多,大多是采用深度学习的方法以达到更好的效果。本文将详细介绍一下OpenCV中的图像分割与修复,需要的可以参考一下
    2022-01-01
  • Python利用pandas和matplotlib实现绘制柱状折线图

    Python利用pandas和matplotlib实现绘制柱状折线图

    这篇文章主要为大家详细介绍了如何使用 Python 中的 Pandas 和 Matplotlib 库创建一个柱状图与折线图结合的数据可视化图表,感兴趣的可以了解一下
    2023-11-11
  • python获取本机外网ip的方法

    python获取本机外网ip的方法

    这篇文章主要介绍了python获取本机外网ip的方法,可实现从外网显示IP的网站获取本机IP的功能,非常具有实用价值,需要的朋友可以参考下
    2015-04-04
  • Python之lxml安装失败的解决

    Python之lxml安装失败的解决

    这篇文章主要介绍了Python之lxml安装失败的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • Python编程中内置的NotImplemented类型的用法

    Python编程中内置的NotImplemented类型的用法

    这篇文章主要介绍了Python编程中内置的NotImplemented类型的用法,NotImplemented 是Python在内置命名空间中的六个常数之一,下文更多详细内容需要的小伙伴可以参考一下
    2022-03-03
  • python实现过滤敏感词

    python实现过滤敏感词

    这篇文章主要介绍了python如何实现过滤敏感词,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-05-05
  • python读取Android permission文件

    python读取Android permission文件

    python解析json文件读取Android permission,同时可以学习到json的知识。
    2013-11-11
  • 如何在python中实现随机选择

    如何在python中实现随机选择

    这篇文章主要介绍了如何在python中实现随机选择,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • Python面向对象编程关键深度探索类与对象

    Python面向对象编程关键深度探索类与对象

    这篇文章主要为大家介绍了Python面向对象编程关键深度探索类与对象示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • python读取一个目录下所有txt里面的内容方法

    python读取一个目录下所有txt里面的内容方法

    今天小编就为大家分享一篇python读取一个目录下所有txt里面的内容方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06

最新评论