pytorch 预训练模型读取修改相关参数的填坑问题

 更新时间:2021年06月05日 10:32:39   作者:DRACO于  
这篇文章主要介绍了pytorch 预训练模型读取修改相关参数的填坑问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

pytorch 预训练模型读取修改相关参数的填坑

修改部分层,仍然调用之前的模型参数。

resnet = resnet50(pretrained=False)
resnet.load_state_dict(torch.load(args.predir))
 
res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2)
print("---------------------",res_conv31)
print("---------------------",resnet.layer3[1])
 
res_conv31.load_state_dict(resnet.layer3[1].state_dict())

网络预训练模型与之前的模型对应不上,名称差个前缀

model_dict = model.state_dict()
# print(model_dict)
pretrained_dict = torch.load("/yzc/reid_testpcb/se_resnet50-ce0d4300.pth")
keys = []
for k, v in pretrained_dict.items():
       keys.append(k)
i = 0
for k, v in model_dict.items():
    if v.size() == pretrained_dict[keys[i]].size():
         model_dict[k] = pretrained_dict[keys[i]]
         #print(model_dict[k])
         i = i + 1
model.load_state_dict(model_dict)

最后是修改参数名拿来用的,

from collections import OrderedDict
pretrained_dict = torch.load('premodel')
 
new_state_dict = OrderedDict()
 
# for k, v in mgn_state_dict.items():
#     name = k[7:]  # remove `module.`
#     new_state_dict[name] = v
# self.model = self.model.load_state_dict(new_state_dict)
 
for k, v in pretrained_dict.items():
    name = "model.module."+k   # remove `module.`
    # print(name)
    new_state_dict[name] = v
self.model.load_state_dict(new_state_dict)

pytorch:加载预训练模型中的部分参数,并固定该部分参数(真实有效)

大家在学习pytorch时,可能想利用pytorch进行fine-tune,但是又烦恼于参数的加载问题。下面我将讲诉我的使用心得。

Step1: 加载预训练模型,并去除需要再次训练的层

#注意:需要重新训练的层的名字要和之前的不同。
model=resnet()#自己构建的模型,以resnet为例
model_dict = model.state_dict()
pretrained_dict = torch.load('xxx.pkl')
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)

Step2:固定部分参数

#k是可训练参数的名字,v是包含可训练参数的一个实体
#可以先print(k),找到自己想进行调整的层,并将该层的名字加入到if语句中:
for k,v in model.named_parameters():
    if k!='xxx.weight' and k!='xxx.bias' :
        v.requires_grad=False#固定参数

Step3:训练部分参数

#将要训练的参数放入优化器
optimizer2=torch.optim.Adam(params=[model.xxx.weight,model.xxx.bias],lr=learning_rate,betas=(0.9,0.999),weight_decay=1e-5)

Step4:检查部分参数是否固定

debug之后,程序正常运行,最好检查一下网络的参数是否真的被固定了,如何没固定,网络的状态接近于重新训练,可能会导致网络性能不稳定,也没办法得到想要得到的性能提升。

for k,v in model.named_parameters():
   if k!='xxx.weight' and k!='xxx.bias' :
   print(v.requires_grad)#理想状态下,所有值都是False

需要注意的是,操作失误最大的影响是,loss函数几乎不会发生变化,一直处于最开始的状态,这很可能是因为所有参数都被固定了。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • matplotlib实现矩阵和图像的可视化表示

    matplotlib实现矩阵和图像的可视化表示

    这篇文章主要为大家详细介绍了如何利用matplotlib实现矩阵和图像的可视化表示,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解下
    2024-03-03
  • Python 文件操作的详解及实例

    Python 文件操作的详解及实例

    这篇文章主要介绍了Python 文件操作的详解及实例的相关资料,希望通过本文大家能够理解掌握Python 文件操作的知识,需要的朋友可以参考下
    2017-09-09
  • python requests指定出口ip的例子

    python requests指定出口ip的例子

    今天小编就为大家分享一篇python requests指定出口ip的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python使用collections模块的容器数据类型高效处理数据

    python使用collections模块的容器数据类型高效处理数据

    这篇文章主要为大家介绍了python使用collections模块的容器数据类型高效处理数据的方法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • 使用Keras预训练模型ResNet50进行图像分类方式

    使用Keras预训练模型ResNet50进行图像分类方式

    这篇文章主要介绍了使用Keras预训练模型ResNet50进行图像分类方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • 学会迭代器设计模式,帮你大幅提升python性能

    学会迭代器设计模式,帮你大幅提升python性能

    这篇文章主要介绍了python 迭代器设计模式的相关资料,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-01-01
  • Python Charles抓包配置实现流程图解

    Python Charles抓包配置实现流程图解

    这篇文章主要介绍了Python Charles抓包实现流程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • Python实现EXCEL表格的排序功能示例

    Python实现EXCEL表格的排序功能示例

    这篇文章主要介绍了Python实现EXCEL表格的排序功能示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • 使用wxPython获取系统剪贴板中的数据的教程

    使用wxPython获取系统剪贴板中的数据的教程

    这篇文章主要介绍了使用wxPython获取系统剪贴板中的数据的教程,wxPython是一个非常受欢迎的Python图形库,需要的朋友可以参考下
    2015-05-05
  • python判断是否汉字的5种方法实例

    python判断是否汉字的5种方法实例

    这篇文章主要给大家介绍了关于python判断是否汉字的5种方法,文中通过实例代码将判断的几种方法介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友可以参考下
    2023-06-06

最新评论