一篇带你解析入门LongAdder源码
1、LongAdder由来
LongAdder
类是JDK1.8新增的一个原子性操作类。AtomicLon
g通过CAS算法提供了非阻塞的原子性操作,相比受用阻塞算法的同步器来说性能已经很好了,但是JDK开发组并不满足于此,因为经常搞并发的请求下AtomicLong
的性能是不能让人接受的。
如下AtomicLong
的incrementAndGet
的代码,虽然AtomicLong
使用CAS算法,但是CAS失败后还是通过无限循环的自旋锁不多的尝试,这就是高并发下CAS性能低下的原因所在。源码如下:
public final long incrementAndGet() { for (;;) { long current = get(); long next = current + 1; if (compareAndSet(current, next)) return next; } }
高并发下N多线程同时去操作一个变量会造成大量线程CAS失败,然后处于自旋状态,导致严重浪费CPU资源,降低了并发性。
2、LongAdder与AtomicLong的简单介绍
我们知道,volatile
关键字是轻量级锁,可以解决多线程内存不可见问题。对于一写多读,可以解决变量同步问题,但是如果是多写,volatile
无法解决线程安全问题的。例如,count++操作,就应该使用如下方式: AtomicInteger count = new AtomicInteger();
、count.addAndGet(1);
而如果是JDK8及以上,推荐使用LongAdder对象替代,因为它的性能比AtomicLong
更好(减少乐观锁的重试次数)。
LongAdder其他应用场景:
对于Java项目
中计数统计的一些需求,如果是 JDK8,推荐使用 LongAdder 对象,比 AtomicLong 性能更好(减少乐观锁的重试次数)
在大多数项目及开源组件中,计数统计使用最多的仍然还是AtomicLong
,虽然是阿里巴巴这样说,但是我们仍然要根据使用场景来决定是否使用LongAdder
。
今天主要是来讲讲LongAdder
的实现原理,还是老方式,通过图文一步步解开LongAdder
神秘的面纱,通过此篇文章你会了解到:
- 为什么AtomicLong在高并发场景下性能急剧下降?
- LongAdder为什么快?
- LongAdder实现原理(图文分析)
- AtomicLong是否可以被遗弃或替换?
本文代码全部基于JDK 1.8,建议边看文章边看源码更加利于消化!
3、AtomicLong
当我们在进行计数统计的时,通常会使用AtomicLong
来实现。AtomicLong
能保证并发情况下计数的准确性,其内部通过CAS来解决并发安全性的问题。
3.1 AtomicLong实现原理
说到线程安全的计数统计工具类,肯定少不了Atomic
下的几个原子类。AtomicLong
就是juc包下重要的原子类,在并发情况下可以对长整形类型数据进行原子操作,保证并发情况下数据的安全性。
public class AtomicLong extends Number implements java.io.Serializable { // + 1 public final long incrementAndGet() { return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L; } // - 1 public final long decrementAndGet() { return unsafe.getAndAddLong(this, valueOffset, -1L) - 1L; } }
我们在计数的过程中,一般使用incrementAndGet()
和decrementAndGet()
进行加一和减一操作,这里调用了Unsafe
类中的getAndAddLong()
方法进行操作。
接着看看unsafe.getAndAddLong()方法:
public final class Unsafe { public final long getAndAddLong(Object var1, long var2, long var4) { long var6; do { var6 = this.getLongVolatile(var1, var2); } while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4)); return var6; } public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6); }
这里直接进行CAS+自旋操作更新AtomicLong
中的value
值,进而保证value
值的原子性更新。
3.2 AtomicLong瓶颈分析
如上代码所示,我们在使用CAS + 自旋的过程中,在高并发环境下,N个线程同时进行自旋操作,会出现大量失败并不断自旋的情况,此时AtomicLong
的自旋会成为瓶颈。
如上图所示,高并发场景下AtomicLong
性能会急剧下降,我们后面也会举例说明。
那么高并发下计数的需求有没有更好的替代方案呢?在JDK8
中 Doug Lea
大神新写了一个LongAdder
来解决此问题,我们后面来看LongAdder
是如何优化的。
4、LongAdder
4.1 LongAdder和AtomicLong性能测试
我们说了很多LongAdder上性能优于AtomicLong,到底是不是呢?一切还是以代码说话:
/** * Atomic和LongAdder耗时测试 */ public class AtomicLongAdderTest { public static void main(String[] args) throws Exception{ testAtomicLongAdder(1, 10000000); testAtomicLongAdder(10, 10000000); testAtomicLongAdder(100, 10000000); } static void testAtomicLongAdder(int threadCount, int times) throws Exception{ System.out.println("threadCount: " + threadCount + ", times: " + times); long start = System.currentTimeMillis(); testLongAdder(threadCount, times); System.out.println("LongAdder 耗时:" + (System.currentTimeMillis() - start) + "ms"); System.out.println("threadCount: " + threadCount + ", times: " + times); long atomicStart = System.currentTimeMillis(); testAtomicLong(threadCount, times); System.out.println("AtomicLong 耗时:" + (System.currentTimeMillis() - atomicStart) + "ms"); System.out.println("----------------------------------------"); } static void testAtomicLong(int threadCount, int times) throws Exception{ AtomicLong atomicLong = new AtomicLong(); List<Thread> list = Lists.newArrayList(); for (int i = 0; i < threadCount; i++) { list.add(new Thread(() -> { for (int j = 0; j < times; j++) { atomicLong.incrementAndGet(); } })); } for (Thread thread : list) { thread.start(); } for (Thread thread : list) { thread.join(); } System.out.println("AtomicLong value is : " + atomicLong.get()); } static void testLongAdder(int threadCount, int times) throws Exception{ LongAdder longAdder = new LongAdder(); List<Thread> list = Lists.newArrayList(); for (int i = 0; i < threadCount; i++) { list.add(new Thread(() -> { for (int j = 0; j < times; j++) { longAdder.increment(); } })); } for (Thread thread : list) { thread.start(); } for (Thread thread : list) { thread.join(); } System.out.println("LongAdder value is : " + longAdder.longValue()); } }
执行结果:
这里可以看到随着并发的增加,AtomicLong
性能是急剧下降的,耗时是LongAdder
的数倍。至于原因我们还是接着往后看。
4.2 LongAdder为什么这么快
先看下LongAdder
的操作原理图:
既然说到LongAdder
可以显著提升高并发环境下的性能,那么它是如何做到的?
1、 设计思想上,LongAdder
采用"分段"的方式降低CAS失败的频次
这里先简单的说下LongAdder
的思路,后面还会详述LongAdder
的原理。
我们知道,AtomicLong中有个内部变量value保存着实际的long值,所有的操作都是针对该变量进行。也就是说,高并发环境下,value
变量其实是一个热点数据,也就是N个线程竞争一个热点。
LongAdder
的基本思路就是分散热点,将value
值的新增操作分散到一个数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个value
值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。
LongAdde
r有一个全局变量volatile long base
值,当并发不高的情况下都是通过CAS来直接操作base值,如果CAS失败,则针对LongAdder
中的Cell[]
数组中的Cell进行CAS操作,减少失败的概率。
例如当前类中base = 10
,有三个线程进行CAS
原子性的**+1操作**,线程一执行成功,此时base=11,线程二、线程三执行失败后开始针对于Cell[]
数组中的Cell
元素进行**+1操作**,同样也是CAS
操作,此时数组index=1
和index=2
中Cell
的value
都被设置为了1.
执行完成后,统计累加数据:sum = 11 + 1 + 1 = 13,利用LongAdder进行累加的操作就执行完了,流程图如下:
如果要获取真正的long
值,只要将各个槽中的变量值累加返回。这种分段的做法类似于JDK7中ConcurrentHashMap
的分段锁。
2、使用Contended注解来消除伪共享
在 LongAdder
的父类 Striped64
中存在一个 volatile Cell[] cells;
数组,其长度是2 的幂次方,每个Cell
都使用 @Contended
注解进行修饰,而@Contended
注解可以进行缓存行填充,从而解决伪共享问题。伪共享会导致缓存行失效,缓存一致性开销变大。
@sun.misc.Contended static final class Cell { }
伪共享指的是多个线程同时读写同一个缓存行的不同变量时导致的 CPU缓存失效
。尽管这些变量之间没有任何关系,但由于在主内存中邻近,存在于同一个缓存行之中,它们的相互覆盖会导致频繁的缓存未命中,引发性能下降。这里对于伪共享我只是提一下概念,并不会深入去讲解,大家可以自行查阅一些资料。
解决伪共享的方法一般都是使用直接填充,我们只需要保证不同线程的变量存在于不同的 CacheLine
即可,使用多余的字节来填充可以做点这一点,这样就不会出现伪共享问题。例如在Disruptor
队列的设计中就有类似设计。
在Striped64
类中我们可以看看Doug Lea
在Cell
上加的注释也有说明这一点:
框中的翻译如下:
Cell
类是AtomicLong
添加了padded(via@sun.misc.compended)
来消除伪共享的变种版本。缓存行填充对于大多数原子来说是繁琐的,因为它们通常不规则地分散在内存中,因此彼此之间不会有太大的干扰。但是,驻留在数组中的原子对象往往彼此相邻,因此在没有这种预防措施的情况下,通常会共享缓存行数据(对性能有巨大的负面影响)。
3、惰性求值
LongAdder
只有在使用longValue()
获取当前累加值时才会真正的去结算计数的数据,longValue()
方法底层就是调用sum()
方法,对base
和Cell
数组的数据累加然后返回,做到数据写入和读取分离。
而AtomicLong
使用incrementAndGet()
每次都会返回long
类型的计数值,每次递增后还会伴随着数据返回,增加了额外的开销。
4.3 LongAdder实现原理
之前说了,AtomicLong
是多个线程针对单个热点值value
进行原子操作。而LongAdder
是每个线程拥有自己的槽,各个线程一般只对自己槽中的那个值进行CAS操作。
比如有三个线程同时对value增加1,那么value = 1 + 1 + 1 = 3
但是对于LongAdder
来说,内部有一个base
变量,一个Cell[]
数组。
base
变量:非竞争条件下,直接累加到该变量上
Cell[]
数组:竞争条件下,累加个各个线程自己的槽Cell[i]
中
最终结果的计算是下面这个形式:
4.4 ongAdder源码剖析
前面已经用图分析了LongAdder
高性能的原理,我们继续看下LongAdder
实现的源码:
public class LongAdder extends Striped64 implements Serializable { public void increment() { add(1L); } public void add(long x) { Cell[] as; long b, v; int m; Cell a; if ((as = cells) != null || !casBase(b = base, b + x)) { boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null || !(uncontended = a.cas(v = a.value, v + x))) longAccumulate(x, null, uncontended); } } final boolean casBase(long cmp, long val) { return UNSAFE.compareAndSwapLong(this, BASE, cmp, val); } }
一般我们进行计数时都会使用increment()
方法,每次进行**+1操作**,increment()
会直接调用add()
方法。
变量说明:
- as 表示cells引用
- b 表示获取的base值
- v 表示 期望值,
- m 表示 cells 数组的长度
- a 表示当前线程命中的cell单元格
条件分析:
条件一:as == null || (m = as.length - 1) < 0
此条件成立说明cells数组未初始化。如果不成立则说明cells数组已经完成初始化,对应的线程需要找到Cell数组中的元素去写值。
条件二:(a = as[getProbe() & m]) == null
getProbe()
获取当前线程的hash值,m表示cells长度-1,cells长度是2的幂次方数,原因之前也讲到过,与数组长度取模可以转化为按位与运算,提升计算性能。
当条件成立时说明当前线程通过hash计算出来数组位置处的cell为空,进一步去执行longAccumulate()
方法。如果不成立则说明对应的cell
不为空,下一步将要将x值通过CAS操作添加到cell中。
条件三:!(uncontended = a.cas(v = a.value, v + x)
主要看a.cas(v = a.value, v + x)
,接着条件二,说明当前线程hash与数组长度取模计算出的位置的cell有值,此时直接尝试一次CAS操作,如果成功则退出if条件,失败则继续往下执行longAccumulate()
方法。
接着往下看核心的longAccumulate()
方法,代码很长,后面会一步步分析,先上代码:
java.util.concurrent.atomic.Striped64.:
final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) { int h; if ((h = getProbe()) == 0) { ThreadLocalRandom.current(); h = getProbe(); wasUncontended = true; } boolean collide = false; for (;;) { Cell[] as; Cell a; int n; long v; if ((as = cells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { Cell r = new Cell(x); if (cellsBusy == 0 && casCellsBusy()) { boolean created = false; try { Cell[] rs; int m, j; if ((rs = cells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) break; continue; } } collide = false; } else if (!wasUncontended) wasUncontended = true; else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break; else if (n >= NCPU || cells != as) collide = false; else if (!collide) collide = true; else if (cellsBusy == 0 && casCellsBusy()) { try { if (cells == as) { Cell[] rs = new Cell[n << 1]; for (int i = 0; i < n; ++i) rs[i] = as[i]; cells = rs; } } finally { cellsBusy = 0; } collide = false; continue; } h = advanceProbe(h); } else if (cellsBusy == 0 && cells == as && casCellsBusy()) { boolean init = false; try { if (cells == as) { Cell[] rs = new Cell[2]; rs[h & 1] = new Cell(x); cells = rs; init = true; } } finally { cellsBusy = 0; } if (init) break; } else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break; } }
代码很长,if else
分支很多,除此看肯定会很头疼。这里一点点分析,然后结合画图一步步了解其中实现原理。
我们首先要清楚执行这个方法的前置条件,它们是或的关系,如上面条件一、二、三
- cells数组没有初始化
- cells数组已经初始化,但是当前线程对应的cell数据为空
- cells数组已经初始化, 当前线程对应的cell数据为空,且CAS操作+1失败
longAccumulate()方法的入参:
- long x 需要增加的值,一般默认都是1
- LongBinaryOperator fn 默认传递的是null
- wasUncontended竞争标识,如果是false则代表有竞争。只有cells初始化之后,并且当前线程CAS竞争修改失败,才会是false
然后再看下Striped64中一些变量或者方法的定义:
- base: 类似于AtomicLong中全局的value值。在没有竞争情况下数据直接累加到base上,或者cells扩容时,也需要将数据写入到base上
- collide:表示扩容意向,false 一定不会扩容,true可能会扩容。
- cellsBusy:初始化cells或者扩容cells需要获取锁,
- 0:表示无锁状态 1:表示其他线程已经持有了锁casCellsBusy(): 通过CAS操作修改cellsBusy的值,CAS成功代表获取锁,返回true
- NCPU:当前计算机CPU数量,Cell数组扩容时会使用到
- getProbe(): 获取当前线程的hash值
- advanceProbe(): 重置当前线程的hash值
接着开始正式解析longAccumulate()源码:
private static final long PROBE; if ((h = getProbe()) == 0) { ThreadLocalRandom.current(); h = getProbe(); wasUncontended = true; } static final int getProbe() { return UNSAFE.getInt(Thread.currentThread(), PROBE); }
我们上面说过getProbe()
方法是为了获取当前线程的hash
值,具体实现是通过UNSAFE.getInt()
实现的,PROBE
是在初始化时候获取当前线程threadLocalRandomProbe
的值。
注:Unsafe.getInt()有三个重载方法getInt(Object o, long offset)、getInt(long address)和getIntVolatile(long address),都是从指定的位置获取变量的值,只不过第一个的offset是相对于对象o的相对偏移量,第二个address是绝对地址偏移量。如果第一个方法中o为null是,offset也会被作为绝对偏移量。第三个则是带有volatile语义的load读操作。
如果当前线程的hash值h=getProbe()为0,0与任何数取模都是0,会固定到数组第一个位置,所以这里做了优化,使用ThreadLocalRandom
为当前线程重新计算一个hash
值。最后设置wasUncontended = true
,这里含义是重新计算了当前线程的hash
后认为此次不算是一次竞争。hash值被重置就好比一个全新的线程一样,所以设置了竞争状态为true。
接着执行for循环
,我们可以把for循环
代码拆分一下,每个if条件
算作一个CASE
来分析:
final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) { for (;;) { Cell[] as; Cell a; int n; long v; if ((as = cells) != null && (n = as.length) > 0) { } else if (cellsBusy == 0 && cells == as && casCellsBusy()) { } else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) } }
如上所示,第一个if语句代表CASE1
,里面再有if判断
会以CASE1.1
这种形式来讲解,下面接着的else if
为CASE2
, 最后一个为CASE3
CASE1执行条件:
if ((as = cells) != null && (n = as.length) > 0) { }
cells数组不为空,且数组长度大于0的情况会执行CASE1,CASE1的实现细节代码较多,放到最后面讲解。
CASE2执行条件和实现原理:
else if (cellsBusy == 0 && cells == as && casCellsBusy()) { boolean init = false; try { if (cells == as) { Cell[] rs = new Cell[2]; rs[h & 1] = new Cell(x); cells = rs; init = true; } } finally { cellsBusy = 0; } if (init) break; }
CASE2
标识cells数组还未初始化,因为判断cells == as
,这个代表当前线程到了这里获取的cells还是之前的一致。我们可以先看这个case
,最后再回头看最为麻烦的CASE1
实现逻辑。
cellsBusy
上面说了是加锁的状态,初始化cells数组
和扩容的时候都要获取加锁的状态,这个是通过CAS
来实现的,为0代表无锁状态,为1代表其他线程已经持有锁了。cells==as
代表当前线程持有的数组未进行修改过,casCellsBusy()
通过CAS操作去获取锁。但是里面的if条件
又再次判断了cell==as
,这一点是不是很奇怪?通过画图来说明下问题:
cells==as双重判断说明.png
如果上面条件都执行成功就会执行数组的初始化及赋值操作, Cell[] rs = new Cell[2
]表示数组的长度为2,rs[h & 1] = new Cell(x)
表示创建一个新的Cell元素
,value是x值,默认为1。
h & 1
类似于我们之前HashMap
或者ThreadLocal
里面经常用到的计算散列桶index
的算法,通常都是hash & (table.len - 1)
,这里就不做过多解释了。执行完成后直接退出for循环
。
CASE3执行条件和实现原理:
else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break;
进入到这里说明cells正在或者已经初始化过了,执行caseBase()
方法,通过CAS
操作来修改base
的值,如果修改成功则跳出循环,这个CASE只有在初始化Cell数组
的时候,多个线程尝试CAS
修改cellsBusy
加锁的时候,失败的线程会走到这个分支,然后直接CAS修改base
数据。
CASE1 实现原理:
分析完了CASE2和CASE3
,我们再折头回看一下CASE1
,进入CASE1
的前提是:cells数组
不为空,已经完成了初始化赋值操作。
接着还是一点点往下拆分代码,首先看第一个判断分支CASE1.1
:
if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { Cell r = new Cell(x); if (cellsBusy == 0 && casCellsBusy()) { boolean created = false; try { Cell[] rs; int m, j; if ((rs = cells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) break; continue; } } collide = false; }
这个if条件中(a = as[(n - 1) & h]) == null
代表当前线程对应的数组下标位置的cell
数据为null
,代表没有线程在此处创建Cell
对象。
接着判断cellsBusy==0
,代表当前锁未被占用。然后新创建Cell对象,接着又判断了一遍cellsBusy == 0
,然后执行casCellsBusy()
尝试通过CAS操作修改cellsBusy=1
,加锁成功后修改扩容意向collide = false
;
for (;;) { if ((rs = cells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } if (created) break; continue; }
上面代码判断当前线程hash
后指向的数据位置元素是否为空,如果为空则将cell
数据放入数组中,跳出循环。如果不为空则继续循环。
继续往下看代码,CASE1.2:
else if (!wasUncontended) wasUncontended = true; h = advanceProbe(h);
wasUncontended
表示cells
初始化后,当前线程竞争修改失败wasUncontended =false
,这里只是重新设置了这个值为true
,紧接着执行advanceProbe(h)
重置当前线程的hash
,重新循环。
接着看CASE1.3:
else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break;
进入CASE1.3
说明当前线程对应的数组中有了数据,也重置过hash
值,这时通过CAS操作尝试对当前数中的value
值进行累加x操作,x默认为1,如果CAS
成功则直接跳出循环。
接着看CASE1.4:
else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break;
如果cells数组
的长度达到了CPU核心数
,或者cells
扩容了,设置扩容意向collide为false
并通过下面的h = advanceProbe(h)
方法修改线程的probe再重新尝试
至于这里为什么要提出和CPU数量
做判断的问题:每个线程会通过线程对cells[threadHash%cells.length]
位置的Cell
对象中的value
做累加,这样相当于将线程绑定到了cells
中的某个cell
对象上,如果超过CPU数量
的时候就不再扩容是因为CPU
的数量代表了机器处理能力,当超过CPU
数量时,多出来的cells
数组元素没有太大作用。
接着看CASE1.5:
else if (n >= NCPU || cells != as) collide = false;
如果扩容意向collide
是false
则修改它为true
,然后重新计算当前线程的hash值继续循环,在CASE1.4
中,如果当前数组的长度已经大于了CPU
的核数,就会再次设置扩容意向collide=false
,这里的意义是保证扩容意向为false
后不再继续往后执行CASE1.6
的扩容操作。
接着看CASE1.6分支:
else if (cellsBusy == 0 && casCellsBusy()) { try { if (cells == as) { Cell[] rs = new Cell[n << 1]; for (int i = 0; i < n; ++i) rs[i] = as[i]; cells = rs; } } finally { cellsBusy = 0; } collide = false; continue; }
这里面执行的其实是扩容逻辑,首先是判断通过CAS
改变cellsBusy
来尝试加锁,如果CAS
成功则代表获取锁成功,继续向下执行,判断当前的cells
数组和最先赋值的as
是同一个,代表没有被其他线程扩容过,然后进行扩容,扩容大小为之前的容量的两倍,这里用的按位左移1位来操作的。
Cell[] rs = new Cell[n << 1];
到了这里,我们已经分析完了longAccumulate()
所有的逻辑,逻辑分支挺多,仔细分析看看其实还是挺清晰的,流程图如下:
我们再举一些线程执行的例子里面场景覆盖不全,大家可以按照这种模式自己模拟场景分析代码流程:
如有问题也请及时指出,我会第一时间更正,不胜感激!
4.5 LongAdder的sum方法
当我们最终获取计数器值时,我们可以使用LongAdder.longValue()
方法,其内部就是使用sum
方法来汇总数据的。
java.util.concurrent.atomic.LongAdder.sum():
public long sum() { Cell[] as = cells; Cell a; long sum = base; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
实现很简单,base +,遍历cells数组中的值,然后累加。
4.6 AtomicLong可以弃用了吗?
看上去LongAdder
的性能全面超越了AtomicLong
,而且阿里巴巴开发手册也提及到 推荐使用 LongAdder 对象,比 AtomicLong 性能更好(减少乐观锁的重试次数),但是我们真的就可以舍弃掉LongAdder
了吗?
当然不是,我们需要看场景来使用,如果是并发不太高的系统,使用AtomicLong
可能会更好一些,而且内存需求也会小一些。
我们看过sum()
方法后可以知道LongAdder
在统计的时候如果有并发更新,可能导致统计的数据有误差。
而在高并发统计计数的场景下,才更适合使用LongAdder
。
5、总结
LongAdder中最核心的思想就是利用空间来换时间,将热点value分散成一个Cell列表来承接并发的CAS,以此来提升性能。
LongAdder的原理及实现都很简单,但其设计的思想值得我们品味和学习。
也希望大家多多关注脚本之家的其他内容!
相关文章
带有@Transactional和@Async的循环依赖问题的解决
这篇文章主要介绍了带有@Transactional和@Async的循环依赖问题的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2020-04-04SpringIOC BeanDefinition的加载流程详解
这篇文章主要为大家介绍了SpringIOC BeanDefinition的加载流程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-10-10IDEA设置生成带注释的getter和setter的图文教程
通常我们用idea默认生成的getter和setter方法是不带注释的,当然,我们同样可以设置idea像MyEclipse一样生成带有Javadoc的模板,具体设置方法,大家参考下本文2018-05-05
最新评论