详解python os.walk()方法的使用

 更新时间:2021年06月18日 11:44:43   作者:林思少  
今天给大家带来的是关于Python的相关知识,文章围绕python os.walk()方法的使用展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下

python os.walk()方法

os.walk方法是python中帮助我们高效管理文件、目录的工具,在深度学习中数据整理应用的很频繁,如数据集的名称格式化、将数据集的按一定比例划分训练集train_set、测试集test_set。

1.导入文件(使用os.walk方法前需要导入以下包)

import os
import random # 后续用来将数据随机打乱和生成确定随机种子,保证每次生成的随机数据一样便于测试模型精准度

2.os.walk()参数解释

os.walk(top, topdown=True, οnerrοr=None, followlinks=False)(后两个参数我几乎没用过)
参数

--top 我们需要遍历的文件夹的地址(最好使用绝对地址,相对地址有时会出现未知错误)
--topdown 该参数为True时,会优先遍历top目录,否则优先遍历top的子目录(默认值为 True)
--onerror 需要一个 callable 对象,当walk需要异常时会调用
--followlinks 如果为真,则会遍历目录下的快捷方式(linux 下是 symbolic link)实际所指的目录(默认关闭)

os.walk 的返回值是一个生成器(generator),也就是说我们可以用循环去不遍历它,来获得其内容。每次遍历的对象都是返回的是一个三元组(root,dirs,files)

--root 指的是当前正在遍历的这个文件夹的本身的地址
--dirs 返回的是一个列表list,表中数据是该文件夹中所有的目录的名称(但不包括子目录名称)
--files 返回的也是一个列表list , 表中数据是该文件夹中所有的文件名称(但不包括子目录名称)

3.用于测试文件夹组织结构

在这里插入图片描述4.

废话不说,看测试例子

4.1 os.walk(top, topdown=True)时打印返回的 root,dirs,files,顺便测试下topdown为真和假时的遍历顺序的区别。(这里就不展示运行后的结果了,代码拿走直接就可运行)

# topdown=True(该参数默认为真)
def _get_img_info(): 
	#测试时将data_dir 换为自己的目标文件夹即可
    data_dir = r'C:\Users\futiange\Desktop\Zero to Hero\expression_test\raw_data'
    for root,dirs,files in os.walk(data_dir,topdown=True):
        print('root={}'.format(root))
        print('dirs={}'.format(dirs))
        print('files={}'.format(files))
if __name__ == '__main__':
    _get_img_info()
# topdown=False(该参数默认为假) 
def _get_img_info(): 
    data_dir = r'C:\Users\futiange\Desktop\Zero to Hero\expression_test\raw_data'
    for root,dirs,files in os.walk(data_dir,topdown=False):
        print('root={}'.format(root))
        print('dirs={}'.format(dirs))
        print('files={}'.format(files))
if __name__ == '__main__':
    _get_img_info()

4.2 使用案例

在深度学习中遍历数据集时,我们可以对数据集划分,这里按train :test = 9 : 1划分。

import os
import random # 后续用来将数据随机打乱和生成确定随机种子,保证每次生成的随机数据一样便于测试模型精准度

def _get_img_info(rng_seed,split_n,mode):
    image_path_list = [] #用来存放图片的路径
    label_path_list = [] #用来存放图片对应的标签
    data_dir = r'C:\Users\futiange\Desktop\Zero to Hero\expression_test\raw_data' 
    for root,dirs,files in os.walk(data_dir):
        for file in files:
            path_file = os.path.join(root,file)
            print(path_file)
            if path_file.endswith(".jpg"): #判断该路径下文件是不是以.jpg结尾
                #print(os.path.basename(root)) #输出图片路径
                #print(os.path.basename(root)[0]) #输出该图片所在的文件夹的第一个字符,我这里文件夹的第一个字符就是图片的标签,测试时可以根据自己的文件夹名称更改
                #print(int(os.path.basename(root)[0]))
                image_path_list.append(path_file) #将图片路径加入列表
                label_path_list.append(os.path.basename(root)[0]) #根据文件夹名称确定标签,并加入列表
    data_info = [[n,l] for n,l in zip(image_path_list,label_path_list)] #将图片路径-标签 关联起来
    random.seed(rng_seed) # 该方法中传入参数,确保每次生成的种子都是一样的
    random.shuffle(data_info) #上一行代码生成的种子是确定的,保证了每次将列表元素打乱后的结果一样,便于测试模型性能
    split_idx = int(len(data_info) * split_n) # data_len * 0.9 # split_n代表数据集划分的比例
    if mode == 'train':
        img_set = data_info[:split_idx] 
    elif mode == 'val':
        img_set = data_info[split_idx:]
    else:
        raise Exception("mode 无法识别,仅支持(train,valid)")
    return img_set #返回随机打乱后的数据集,后续在对其进行格式化即可将数据集加载进模型测试
if __name__ == '__main__':
    _get_img_info(1,0.9,'train')

到此这篇关于详解python os.walk()方法的使用的文章就介绍到这了,更多相关python os.walk()方法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python类的继承和多态代码详解

    Python类的继承和多态代码详解

    这篇文章主要介绍了Python类的继承和多态代码详解,具有一定借鉴价值,需要的朋友可以参考下
    2017-12-12
  • python holidays获取中国节日的示例

    python holidays获取中国节日的示例

    在Python中,holidays库是一个流行的库,用于处理各种国家和地区的公共假期,这篇文章主要介绍了python holidays获取中国节日,需要的朋友可以参考下
    2024-06-06
  • 一文带你深入了解Python中的数据清洗

    一文带你深入了解Python中的数据清洗

    数据清洗一般包括:空值,异常值,重复值,类型转换和数据整合这些操作,这篇文章将通过一些示例为大家详细讲讲Python中数据清洗的操作的实现,需要的可以参考一下
    2023-03-03
  • python面试题之read、readline和readlines的区别详解

    python面试题之read、readline和readlines的区别详解

    当python进行文件的读取会遇到三个不同的函数,它们分别是read(),readline(),和readlines(),下面这篇文章主要给大家介绍了关于python面试题之read、readline和readlines区别的相关资料,需要的朋友可以参考下
    2022-07-07
  • 三分钟python搭建支付宝三方支付

    三分钟python搭建支付宝三方支付

    本文主要介绍了三分钟python搭建支付宝三方支付,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • Python3匿名函数lambda介绍与使用示例

    Python3匿名函数lambda介绍与使用示例

    这篇文章主要给大家介绍了关于Python3匿名函数lambda与使用的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Python3具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-05-05
  • python使用pyodbc连接sqlserver

    python使用pyodbc连接sqlserver

    本文主要介绍了python使用pyodbc连接sqlserver,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • python实现简易云音乐播放器

    python实现简易云音乐播放器

    这篇文章主要介绍了python实现简易云音乐播放器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • pycharm创建并使用虚拟环境的详细图文教程

    pycharm创建并使用虚拟环境的详细图文教程

    Python的虚拟环境是正常的现实环境相对应的,在虚拟环境中安装的包是与现实环境隔离的,下面这篇文章主要给大家介绍了关于pycharm创建并使用虚拟环境的详细图文教程,需要的朋友可以参考下
    2022-08-08
  • opencv 图像礼帽和图像黑帽的实现

    opencv 图像礼帽和图像黑帽的实现

    这篇文章主要介绍了opencv 图像礼帽和图像黑帽的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07

最新评论