详解Java如何实现FP-Growth算法

 更新时间:2021年06月22日 14:32:37   作者:Kidca  
学校里的实验,要求实现FP-Growth算法.FP-Growth算法比Apriori算法快很多(但是却比不上时间)在网上搜索后发现Java实现的FP-Growth算法很少,且大多数不太能理解):太菜.所以就自己实现了一下.这篇文章重点介绍一下我的Java实现 ,需要的朋友可以参考下

FP-Growth算法的Java实现

这篇文章重点讲一下实现。需要两次扫描来构建FP树

第一次扫描

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局支持度降序排序。

按照这个需求,可能的难点为如何按照全局支持度对每个事务中的item排序。

我的实现思路

  • 扫描原数据集将其保存在二维列表sourceData中
  • 维护一个Table,使其保存每个item的全局支持度TotalSup
  • 在Table中过滤掉低于阈值minSup的项
  • 将Table转换为List,并使其按照TotalSup降序排序
  • 新建一个二维列表freqSource,其保留sourceData中的频繁项,并将每个事务按全局支持度降序排序

代码

/**
     * 扫描原数据集,生成事务集
     * @param path 数据集路径
     * @throws IOException
     */

    private void scanDataSet(String path) throws IOException {
        if(path.equals("")){
            path = filePath;
        }
        FileReader fr = new FileReader(path);
        BufferedReader bufferedReader = new BufferedReader(fr);
        String str;
//        int maxLength = 0;
        while ( (str = bufferedReader.readLine())!=null){
            ArrayList<Integer> transaction = new ArrayList<>();
            String[] tempEntry ;
            tempEntry = str.split(" ");
            for(int i =0;i< tempEntry.length;i++){
                if(!tempEntry[i].equals("")){
                    int itemValue = Integer.parseInt(tempEntry[i]);
                    transaction.add(itemValue);
                    if(!similarSingleItemLinkedListHeadsTable.containsKey(itemValue)){
                        similarSingleItemLinkedListHeadsTable.put(itemValue, new SimilarSingleItemLinkedListHead(itemValue,null,1));
                    }else{
                        //将该项的全局支持度+1
                        similarSingleItemLinkedListHeadsTable.get(itemValue).addSupTotal();
                    }
                }
            }
//            if(tempEntry.length>maxLength){
//                maxLength = tempEntry.length;
//            }

            sourceDataSet.add(transaction);

        }
//        System.out.println(maxLength);
        deleteNonFreqInSSILLHTAndSort();
        deleteNonFreqInSDSAndSort();
        bufferedReader.close();
        fr.close();
    }
        /**
     * 去除相似项表(similarSingleItemLinkedListHeadsTable)的非频繁项,并按全局支持度对similarSingleItemLinkedListHeads降序排序
     */
    private void deleteNonFreqInSSILLHTAndSort() {
        Hashtable<Integer,SimilarSingleItemLinkedListHead> copyOfSSILLHT =
                (Hashtable<Integer, SimilarSingleItemLinkedListHead>) similarSingleItemLinkedListHeadsTable.clone();
        Set<Integer> keySet = copyOfSSILLHT.keySet();
        //删除非频繁项
        for(int key: keySet){
            if(similarSingleItemLinkedListHeadsTable.get(key).getSupTotal()<minSupCnt){//低于支持度阈值
                similarSingleItemLinkedListHeadsTable.remove(key);
            }
        }
        //按全局支持度排序
        similarSingleItemLinkedListHeadList = new ArrayList<>(similarSingleItemLinkedListHeadsTable.values());
        similarSingleItemLinkedListHeadList.sort(new Comparator<SimilarSingleItemLinkedListHead>() {
            @Override
            public int compare(SimilarSingleItemLinkedListHead o1, SimilarSingleItemLinkedListHead o2) {
                return o2.getSupTotal() - o1.getSupTotal();
            }
        });

    }
        /**
     * 去除事务集(sourceDataSet)的非频繁项,并且按全局支持度对每个事务的item进行降序排序
     * 其结果保存在freqSourceSortedDataSet
     */
    private void deleteNonFreqInSDSAndSort(){
        freqSourceSortedDataSet = (ArrayList<ArrayList<Integer>>) sourceDataSet.clone();
        for(int i =0;i<sourceDataSet.size();i++){
            for(int j = 0;j<sourceDataSet.get(i).size();j++){
                int item = sourceDataSet.get(i).get(j);
                // 由于此时SSILLHT里的项都是频繁项,只需要确定item是否存在在其中即可,存在即代表频繁.
                if(visitSupTotal(item)==-1){
                    //将非频繁项标记为最小整数值
                    freqSourceSortedDataSet.get(i).set(j,Integer.MIN_VALUE);
                }
            }
            //将标记的项移除.
            freqSourceSortedDataSet.get(i).removeIf(e->e == Integer.MIN_VALUE);
            insertSort(freqSourceSortedDataSet.get(i));
        }
        freqSourceSortedDataSet.removeIf(e->e.size() == 0);

    }

第二次扫描

第二次扫描,构造FP树。
参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息

这里比较简单,因为已经有过滤、排序好的数据freqSourceSortedDataSet。我们只需要

  • 遍历freqSourceSortedDataSet的每一个事务trans,遍历trans中的每一个item构建FP树和相似项链表
  • 如果某item第一次遇到,则需要创建该节点并在相似项链表中链接它。
  • 链表不用多说。
  • 这里的FP树的子节点是不定个数的,需要用特殊的数据结构。我这里使用了HashTable
  /**
     * 构建FP树
     */
    private void buildFPTree(){
        for(ArrayList<Integer>trans:freqSourceSortedDataSet){
            Node curTreeNode = fpTree.root;
            for(int item :trans){
                if(!curTreeNode.children.containsKey(item)){
                    Node node = new Node(item,1);
                    curTreeNode.children.put(item,node);
                    node.father = curTreeNode;
                    buildSimilarSingleItemLinkedList(item,curTreeNode);
                }else{
                    curTreeNode.children.get(item).sup++;
                }
                curTreeNode=curTreeNode.children.get(item);
            }
        }
    }
    /**
     * 构建相似项链表
     */
    private void buildSimilarSingleItemLinkedList(int item,Node curTreeNode){
        //找到该item在相似项链表中的位置

        int index = searchForItemInHeadsList(item,
                (ArrayList<SimilarSingleItemLinkedListHead>) similarSingleItemLinkedListHeadList);
        if(similarSingleItemLinkedListHeadList.get(index).next == null){
            similarSingleItemLinkedListHeadList.get(index).next = curTreeNode.children.get(item);
        }else{
            Node visitNode = similarSingleItemLinkedListHeadList.get(index).next;
            while (visitNode.nextSimilar!=null){

                visitNode = visitNode.nextSimilar;
            }
            if(visitNode != curTreeNode.children.get(item))
                visitNode.nextSimilar = curTreeNode.children.get(item);
        }
    }
    /**
     * 在HeadList中搜索某项的位置
     * @param item 项
     * @param similarSingleItemLinkedListHeads 头结点链表
     * @return 位置,-1表示未找到
     */
    private int searchForItemInHeadsList(int item, ArrayList<SimilarSingleItemLinkedListHead> similarSingleItemLinkedListHeads) {
        for(int i =0;i<similarSingleItemLinkedListHeads.size();i++){
            if(similarSingleItemLinkedListHeads.get(i).getItemValue() == item){
                return i;
            }
        }
        return -1;
    }
    

挖掘频繁项集

这一部分个人觉得是实现上最困难的部分。但是我在B站或其他地方一涉及到这个地方都讲得很快(B站也没两个视频讲这玩意儿,吐)。还有不同的概念,比如在黑皮书上讲的是前缀路径,在其他地方有条件模式基等概念。接下来的代码均按照前缀路径的说法来实现。

我们来捋一捋思路,挖掘频繁项集需要干什么。

首先需要从后向前遍历相似项链表的列表(这一列表已经在第一次扫描中按全局支持度排过序了)的每一项。

对每一项递归地进行如下步骤:

①记录前缀路径。我使用的方法是用一个HashSet记录前缀路径中出现的所有节点。

②记录该FP树的每一item的支持度。类似于前面的第一次扫描。

③根据记录的支持度,如果item频繁,则该item和当前的后缀为频繁项集。

④再根据record构建该FP树的相似项链表列表,去除掉非频繁项(类似第一次扫描)和当前item构成条件FP树。这里并不需要重新建立一个FP树的结构来构成条件FP树,因为记录前缀路径只需要访问相似项和父项。

⑤对相似项链表列表的剩余项再进行①步骤,直到相似项链表列表中没有项,为终止。

/**
     * 算法执行函数
     * @param minSupCnt 最小支持度计数
     * @param path 文件路径
     * @param pT 输出结果的项集大小阈值
     */
    public void run(int minSupCnt,String path,int pT) throws IOException {
        this.printThreshold = pT;
        this.minSupCnt = minSupCnt;
        scanDataSet(path);
        buildFPTree();
        for(int i = similarSingleItemLinkedListHeadList.size()-1;i>=0;i--){
            genFreqItemSet(similarSingleItemLinkedListHeadList.get(i).getItemValue()
                    ,fpTree,similarSingleItemLinkedListHeadList,new TreeSet<>());
        }
        //genFreqItemSet(14,fpTree,similarSingleItemLinkedListHeadList,new TreeSet<>());
        System.out.println("频繁项集个数:\t"+cntOfFreqSet);
    }
/**
     * 生成频繁项集
     * @param last 最后项
     * @param fPTree 条件FP树
     * @param fatherSimilarSingleItemLinkedListHeads 父树的相似项头结点链表
     * @param freqItemSet 频繁项集
     */
    private void genFreqItemSet(int last,FPTree fPTree,
                                List<SimilarSingleItemLinkedListHead>fatherSimilarSingleItemLinkedListHeads,TreeSet<Integer>freqItemSet) {

        FPTree conditionalFPTree = new FPTree();
        List<SimilarSingleItemLinkedListHead>similarSingleItemLinkedListHeads = new ArrayList<>();

        TreeSet<Integer>localFreqItemSet = (TreeSet<Integer>) freqItemSet.clone();
        int index ;
        index = searchForItemInHeadsList(last,
                (ArrayList<SimilarSingleItemLinkedListHead>) fatherSimilarSingleItemLinkedListHeads);

        Node firstNode = fatherSimilarSingleItemLinkedListHeads.get(index).next;
        HashSet<Node>record = new HashSet<>();  //用于记录前缀路径上出现的节点
        //记录前缀路径
        if(firstNode!=null){
            record.add(firstNode);
            Node nodeToVisitFather = firstNode;
            Node nodeToVisitSimilar = firstNode;
            while (nodeToVisitSimilar!=null){
                nodeToVisitSimilar.supInCFP = nodeToVisitSimilar.sup;
                nodeToVisitFather = nodeToVisitSimilar;
                while (nodeToVisitFather!=null){
                    // 计算supInCFT
                    if(nodeToVisitFather!=nodeToVisitSimilar)
                        nodeToVisitFather.supInCFP += nodeToVisitSimilar.supInCFP;
                    record.add(nodeToVisitFather);
                    nodeToVisitFather = nodeToVisitFather.father;
                }
                nodeToVisitSimilar = nodeToVisitSimilar.nextSimilar;
            }

            //记录在子树中的支持度
            Hashtable<Integer,Integer> supRecord = new Hashtable<>();
            record.forEach(new Consumer<Node>() {
                @Override
                public void accept(Node node) {
                    int item = node.item;
                    if(item == -1 ){    //根节点
                        return;
                    }
                    if(supRecord.containsKey(item)){
                        supRecord.put(item,supRecord.get(item)+ node.supInCFP);
                    }else{
                        supRecord.put(item,node.supInCFP);
                    }

                }
            });
            //输出结果
            if(supRecord.get(last)>=minSupCnt){
                localFreqItemSet.add(last);
                if(localFreqItemSet.size()>=printThreshold && !result.contains(localFreqItemSet)){
                    cntOfFreqSet++;
//                    for(int i = localFreqItemSet.size()-1;i>=0;i--){
//                        System.out.print(localFreqItemSet.get(i)+" ");
//                    }
                    localFreqItemSet.forEach(new Consumer<Integer>() {
                        @Override
                        public void accept(Integer integer) {
                            System.out.print(integer+" ");
                        }
                    });
                    result.add(localFreqItemSet);

                    System.out.println("");
                }
            }

            //构建相似项链表
            record.forEach(new Consumer<Node>() {
                @Override
                public void accept(Node node) {
                    if(node.item == -1){    //根节点
                        Node visitNode = node;
                        buildConditionalFPTree(conditionalFPTree.root, visitNode,record,
                                (ArrayList<SimilarSingleItemLinkedListHead>) similarSingleItemLinkedListHeads,supRecord,last);
                    }
                }
            });
            //按支持度降序排序
            similarSingleItemLinkedListHeads.sort(new Comparator<SimilarSingleItemLinkedListHead>() {
                @Override
                public int compare(SimilarSingleItemLinkedListHead o1, SimilarSingleItemLinkedListHead o2) {
                    return o2.getSupTotal() - o1.getSupTotal();
                }
            });

            if(similarSingleItemLinkedListHeads.size()>=1){
                //递归搜索频繁项
                for(int i =similarSingleItemLinkedListHeads.size()-1;i>=0;i--){
                    genFreqItemSet(similarSingleItemLinkedListHeads.get(i).getItemValue(),
                            conditionalFPTree,similarSingleItemLinkedListHeads,localFreqItemSet);
                    // similarSingleItemLinkedListHeads.remove(i);
                }
            }
        }
    }
/**
     * 递归构建条件FP树
     * @param rootNode 以该节点为根向下建立条件FP树
     * @param originalNode  rootNode对应在原树中的节点
     * @param record    前缀路径
     * @param similarSingleItemLinkedListHeads  相似项表头链表
     * @param supRecord 支持度计数的记录
     * @param last 最后项
     */
    private void buildConditionalFPTree(Node rootNode,Node originalNode,HashSet<Node>record
            ,ArrayList<SimilarSingleItemLinkedListHead>similarSingleItemLinkedListHeads,Hashtable<Integer,Integer>supRecord,int last){
        if(originalNode.children!=null){
            for(int key:originalNode.children.keySet()){    //遍历originalNode的所有儿子节点,检查其是否在前缀路径中
                Node tempNode = originalNode.children.get(key);
                if(record.contains(tempNode)){
                    Node addedNode = new Node(tempNode.item, tempNode.supInCFP);
                    if(last == key){    //去除last的所有节点
                        tempNode.supInCFP = 0;
                        continue;
                    }
                    if(supRecord.get(key)>=minSupCnt){
                        //addedNode 拷贝 tempNode除儿子节点外的属性
                        addedNode.supInCFP = tempNode.supInCFP;
                        rootNode.children.put(tempNode.item, addedNode);
                        addedNode.father = rootNode;
                        //构建相似项表
                        int i = searchForItemInHeadsList(tempNode.item,similarSingleItemLinkedListHeads);
                        if(i==-1){
                            similarSingleItemLinkedListHeads.add(new SimilarSingleItemLinkedListHead(key,addedNode, addedNode.supInCFP));
                        }else{
                            similarSingleItemLinkedListHeads.get(i).setSupTotal(similarSingleItemLinkedListHeads.get(i).getSupTotal()+addedNode.supInCFP);
                            Node visitNode = similarSingleItemLinkedListHeads.get(i).next;
                             while (visitNode.nextSimilar!=null){
                                visitNode = visitNode.nextSimilar;
                            }
                            if(visitNode!=addedNode){
                                visitNode.nextSimilar= addedNode;
                            }
                        }
                        buildConditionalFPTree(addedNode,originalNode.children.get(key),record,similarSingleItemLinkedListHeads,supRecord,last);
                        addedNode.supInCFP = 0; //将supInCFP重置为0;
                    }else{
                        buildConditionalFPTree(rootNode,originalNode.children.get(key),record,similarSingleItemLinkedListHeads,supRecord,last);
                    }

                }
            }
        }
    }

完整代码

FP-Growth

到此这篇关于详解Java如何实现FP-Growth算法的文章就介绍到这了,更多相关Java实现FP-Growth算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 全排列算法-递归与字典序的实现方法(Java)

    全排列算法-递归与字典序的实现方法(Java)

    下面小编就为大家带来一篇全排列算法-递归与字典序的实现方法(Java) 。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-04-04
  • Spring MVC拦截器和跨域请求使用详解

    Spring MVC拦截器和跨域请求使用详解

    SpringMVC的拦截器也是AOP思想的一种实现方式,主要用于拦截用户的请求并做相应的处理,通常应用在权限验证、记录请求信息的日志、判断用户是否登录等功能上,这篇文章主要介绍了Spring MVC拦截器和跨域请求,需要的朋友可以参考下
    2023-07-07
  • 详解Java中的阻塞队列

    详解Java中的阻塞队列

    在去年的面试过程中,被面试官问道“阻塞队列”这个问题,因为当时并没有对此问题进行深入理解,只是按照自己的理解说明了该问题,最后面试结果也不太好,今天对该问题进行简要的面试并记录如下;如有错误,欢迎指正,需要的朋友可以参考下
    2021-06-06
  • 深入理解spring的AOP机制原理

    深入理解spring的AOP机制原理

    本篇文章主要介绍了深入理解spring的AOP机制原理,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-09-09
  • Java中内部类的概念与分类详解

    Java中内部类的概念与分类详解

    一个类的定义放在另一个类的内部,这个类就叫做内部类,下面这篇文章主要给大家介绍了关于Java中内部类的概念与分类的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2021-09-09
  • spring mvc中直接注入的HttpServletRequst安全吗

    spring mvc中直接注入的HttpServletRequst安全吗

    这篇文章主要给大家介绍了关于spring mvc中直接注入的HttpServletRequst是不是安全的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2018-04-04
  • java抓取鼠标事件和鼠标滚轮事件示例

    java抓取鼠标事件和鼠标滚轮事件示例

    这篇文章主要介绍了java抓取鼠标事件和鼠标滚轮事件示例,需要的朋友可以参考下
    2014-05-05
  • SpringAOP实现日志收集管理功能(步骤详解)

    SpringAOP实现日志收集管理功能(步骤详解)

    这篇文章主要介绍了SpringAOP实现日志收集管理功能,本文分步骤通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-03-03
  • 详解Spring boot Admin 使用eureka监控服务

    详解Spring boot Admin 使用eureka监控服务

    本篇文章主要介绍了详解Spring boot Admin 使用eureka监控服务,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • Spring Cloud Feign请求添加headers的实现方式

    Spring Cloud Feign请求添加headers的实现方式

    这篇文章主要介绍了Spring Cloud Feign请求添加headers的实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-04-04

最新评论