RocketMQ存储文件的实现
RocketMQ存储路径默认是${ROCKRTMQ_HOME}/store,主要存储消息、主题对应的消息队列的索引等。
1、概述
查看其目录文件
commitlog
:消息的存储目录config
:运行期间一些配置信息
consumequeue
:消息消费队列存储目录index
:消息索引文件存储目录abort
:如果存在abort文件说明Broker非正常关闭,该文件默认启动时创建,正常退出时删除checkpoint
:文件检测点。存储commitlog文件最后一次刷盘时间戳、consumequeue最后一次刷盘时间、index索引文件最后一次刷盘时间戳。
2、文件简介
2.1、commitlog文件
commitlog文件的存储地址:$HOME\store\commitlog${fileName},每个文件的大小默认1G =102410241024,commitlog的文件名fileName,名字长度为20位,左边补零,剩余为起始偏移量;比如00000000000000000000代表了第一个文件,起始偏移量为0,文件大小为1G=1073741824;当这个文件满了,第二个文件名字为00000000001073741824,起始偏移量为1073741824,以此类推,第三个文件名字为00000000002147483648,起始偏移量为2147483648 ,消息存储的时候会顺序写入文件,当文件满了,写入下一个文件。
commitlog目录下的文件主要存储消息,每条消息的长度不同,查看其存储的逻辑视图,每条消息的前面4个字节存储该条消息的总长度。
文件的消息单元存储详细信息
编号 | 字段简称 | 字段大小(字节) | 字段含义 |
---|---|---|---|
1 | msgSize | 4 | 代表这个消息的大小 |
2 | MAGICCODE | 4 | MAGICCODE = daa320a7 |
3 | BODY CRC | 4 | 消息体BODY CRC 当broker重启recover时会校验 |
4 | queueId | 4 | |
5 | flag | 4 | |
6 | QUEUEOFFSET | 8 | 这个值是个自增值不是真正的consume queue的偏移量,可以代表这个consumeQueue队列或者tranStateTable队列中消息的个数,若是非事务消息或者commit事务消息,可以通过这个值查找到consumeQueue中数据,QUEUEOFFSET * 20才是偏移地址;若是PREPARED或者Rollback事务,则可以通过该值从tranStateTable中查找数据 |
7 | PHYSICALOFFSET | 8 | 代表消息在commitLog中的物理起始地址偏移量 |
8 | SYSFLAG | 4 | 指明消息是事物事物状态等消息特征,二进制为四个字节从右往左数:当4个字节均为0(值为0)时表示非事务消息;当第1个字节为1(值为1)时表示表示消息是压缩的(Compressed);当第2个字节为1(值为2)表示多消息(MultiTags);当第3个字节为1(值为4)时表示prepared消息;当第4个字节为1(值为8)时表示commit消息;当第3/4个字节均为1时(值为12)时表示rollback消息;当第3/4个字节均为0时表示非事务消息 |
9 | BORNTIMESTAMP | 8 | 消息产生端(producer)的时间戳 |
10 | BORNHOST | 8 | 消息产生端(producer)地址(address:port) |
11 | STORETIMESTAMP | 8 | 消息在broker存储时间 |
12 | STOREHOSTADDRESS | 8 | 消息存储到broker的地址(address:port) |
13 | RECONSUMETIMES | 8 | 消息被某个订阅组重新消费了几次(订阅组之间独立计数),因为重试消息发送到了topic名字为%retry%groupName的队列queueId=0的队列中去了,成功消费一次记录为0; |
14 | PreparedTransaction Offset | 8 | 表示是prepared状态的事物消息 |
15 | messagebodyLength | 4 | 消息体大小值 |
16 | messagebody | bodyLength | 消息体内容 |
17 | topicLength | 1 | topic名称内容大小 |
18 | topic | topicLength | topic的内容值 |
19 | propertiesLength | 2 | 属性值大小 |
20 | properties | propertiesLength | propertiesLength大小的属性数据 |
2.2、consumequeue
RocketMQ基于主题订阅模式实现消息的消费,消费者关心的是主题下的所有消息。
但是由于不同的主题的消息不连续的存储在commitlog文件中,如果只是检索该消息文件可想而知会有多慢,为了提高效率,对应的主题的队列建立了索引文件,为了加快消息的检索和节省磁盘空间,每一个consumequeue条目存储了消息的关键信息commitog文件中的偏移量、消息长度、tag的hashcode值。
查看目录结构:
单个consumequeue文件中默认包含30万个条目,每个条目20个字节,所以每个文件的大小是固定的20w x 20字节,单个consumequeue文件可认为是一个数组,下标即为逻辑偏移量,消息的消费进度存储的偏移量即逻辑偏移量。
2.3、IndexFile
IndexFile:用于为生成的索引文件提供访问服务,通过消息Key值查询消息真正的实体内容。在实际的物理存储上,文件名则是以创建时的时间戳命名的,固定的单个IndexFile文件大小约为400M,一个IndexFile可以保存 2000W个索引;
2.3.1、IndexFile结构分析
IndexHead 数据: beginTimestamp:该索引文件包含消息的最小存储时间 endTimestamp:该索引文件包含消息的最大存储时间 beginPhyoffset:该索引文件中包含消息的最小物理偏移量(commitlog 文件偏移量) endPhyoffset:该索引文件中包含消息的最大物理偏移量(commitlog 文件偏移量) hashSlotCount:hashslot个数,并不是 hash 槽使用的个数,在这里意义不大, indexCount:已使用的 Index 条目个数
Hash 槽: 一个 IndexFile 默认包含 500W 个 Hash 槽,每个 Hash 槽存储的是落在该 Hash 槽的 hashcode 最新的 Index 的索引
Index 条目列表 hashcode:key 的 hashcode phyoffset:消息对应的物理偏移量 timedif:该消息存储时间与第一条消息的时间戳的差值,小于 0 表示该消息无效 preIndexNo:该条目的前一条记录的 Index 索引,hash 冲突时,根据该值构建链表结构
2.3.2、IndexFile条目存储
RocketMQ将消息索引键与消息的偏移量映射关系写入IndexFile中,其核心的实现方法是public boolean putKey(final String key, final long phyOffset, final long storeTimestamp);参数含义分别是消息的索引、消息的物理偏移量、消息的存储时间。
public boolean putKey(final String key, final long phyOffset, final long storeTimestamp) { //判断当前的条目数是否大于最大的允许的条目数 if (this.indexHeader.getIndexCount() < this.indexNum) { //获取KEY的hash值(正整数) int keyHash = indexKeyHashMethod(key); //计算hash槽的下标 int slotPos = keyHash % this.hashSlotNum; //获取hash槽的物理地址 int absSlotPos = IndexHeader.INDEX_HEADER_SIZE + slotPos * hashSlotSize; FileLock fileLock = null; try { // fileLock = this.fileChannel.lock(absSlotPos, hashSlotSize, // false); //获取hash槽中存储的数据 int slotValue = this.mappedByteBuffer.getInt(absSlotPos); //判断值是否小于等于0或者 大于当前索引文件的最大条目 if (slotValue <= invalidIndex || slotValue > this.indexHeader.getIndexCount()) { slotValue = invalidIndex; } //计算当前消息存储时间与第一条消息时间戳的时间差 long timeDiff = storeTimestamp - this.indexHeader.getBeginTimestamp(); //秒 timeDiff = timeDiff / 1000; if (this.indexHeader.getBeginTimestamp() <= 0) { timeDiff = 0; } else if (timeDiff > Integer.MAX_VALUE) { timeDiff = Integer.MAX_VALUE; } else if (timeDiff < 0) { timeDiff = 0; } //计算条目的物理地址 = 索引头部大小(40字节) + hash槽的大小(4字节)*槽的数量(500w) + 当前索引最大条目的个数*每index的大小(20字节) int absIndexPos = IndexHeader.INDEX_HEADER_SIZE + this.hashSlotNum * hashSlotSize + this.indexHeader.getIndexCount() * indexSize; //依次存入 key的hash值(4字节)+消息的物理偏移量(8字节)+消息存储时间戳和index文件的时间戳差(4字节)+当前hash槽的值(4字节) this.mappedByteBuffer.putInt(absIndexPos, keyHash); this.mappedByteBuffer.putLong(absIndexPos + 4, phyOffset); this.mappedByteBuffer.putInt(absIndexPos + 4 + 8, (int) timeDiff); this.mappedByteBuffer.putInt(absIndexPos + 4 + 8 + 4, slotValue); //存储当前index中包含的条目数量存入hash槽中,覆盖原先hash槽的值 this.mappedByteBuffer.putInt(absSlotPos, this.indexHeader.getIndexCount()); if (this.indexHeader.getIndexCount() <= 1) { this.indexHeader.setBeginPhyOffset(phyOffset); this.indexHeader.setBeginTimestamp(storeTimestamp); } //更新文件索引的头信息,hash槽的总数、index条目的总数、最后消息的物理偏移量、最后消息的存储时间 this.indexHeader.incHashSlotCount(); this.indexHeader.incIndexCount(); this.indexHeader.setEndPhyOffset(phyOffset); this.indexHeader.setEndTimestamp(storeTimestamp); return true; } catch (Exception e) { log.error("putKey exception, Key: " + key + " KeyHashCode: " + key.hashCode(), e); } finally { if (fileLock != null) { try { fileLock.release(); } catch (IOException e) { log.error("Failed to release the lock", e); } } } } else { log.warn("Over index file capacity: index count = " + this.indexHeader.getIndexCount() + "; index max num = " + this.indexNum); } return false; }
以上详细了分析了IndexFile条目存储的业务逻辑
2.3.3、通过KEY查找消息
DefaultMessageStore类中的
public QueryMessageResult queryMessage(String topic, String key, int maxNum, long begin, long end)
中其核心方法是
QueryOffsetResult queryOffsetResult = this.indexService.queryOffset(topic, key, maxNum, begin, lastQueryMsgTime);
获取消息的物理存储地址,通过偏移量去commitLog中获取消息集。
public QueryOffsetResult queryOffset(String topic, String key, int maxNum, long begin, long end)
核心方法又是IndexFile类中的
public void selectPhyOffset(final List<Long> phyOffsets, final String key, final int maxNum, final long begin, final long end, boolean lock)
方法
public void selectPhyOffset(final List<Long> phyOffsets, final String key, final int maxNum, final long begin, final long end, boolean lock) { if (this.mappedFile.hold()) { //获取key的hash信息 int keyHash = indexKeyHashMethod(key); //获取hash槽的下标 int slotPos = keyHash % this.hashSlotNum; //获取hash槽的物理地址 int absSlotPos = IndexHeader.INDEX_HEADER_SIZE + slotPos * hashSlotSize; FileLock fileLock = null; try { if (lock) { // fileLock = this.fileChannel.lock(absSlotPos, // hashSlotSize, true); } //获取hash槽的值 int slotValue = this.mappedByteBuffer.getInt(absSlotPos); // if (fileLock != null) { // fileLock.release(); // fileLock = null; // } //判断值是否小于等于0或者 大于当前索引文件的最大条目 if (slotValue <= invalidIndex || slotValue > this.indexHeader.getIndexCount() || this.indexHeader.getIndexCount() <= 1) { } else { for (int nextIndexToRead = slotValue; ; ) { if (phyOffsets.size() >= maxNum) { break; } //计算条目的物理地址 = 索引头部大小(40字节) + hash槽的大小(4字节)*槽的数量(500w) + 当前索引最大条目的个数*每index的大小(20字节) int absIndexPos = IndexHeader.INDEX_HEADER_SIZE + this.hashSlotNum * hashSlotSize + nextIndexToRead * indexSize; //获取key的hash值 int keyHashRead = this.mappedByteBuffer.getInt(absIndexPos); //获取消息的物理偏移量 long phyOffsetRead = this.mappedByteBuffer.getLong(absIndexPos + 4); //获取当前消息的存储时间戳与index文件的时间戳差值 long timeDiff = (long) this.mappedByteBuffer.getInt(absIndexPos + 4 + 8); //获取前一个条目的信息(链表结构) int prevIndexRead = this.mappedByteBuffer.getInt(absIndexPos + 4 + 8 + 4); if (timeDiff < 0) { break; } timeDiff *= 1000L; long timeRead = this.indexHeader.getBeginTimestamp() + timeDiff; //判断该消息是否在查询的区间 boolean timeMatched = (timeRead >= begin) && (timeRead <= end); //判断key的hash值是否相等并且在查询的时间区间内 if (keyHash == keyHashRead && timeMatched) { //加入到物理偏移量的List中 phyOffsets.add(phyOffsetRead); } if (prevIndexRead <= invalidIndex || prevIndexRead > this.indexHeader.getIndexCount() || prevIndexRead == nextIndexToRead || timeRead < begin) { break; } //继续前一个条目信息获取进行匹配 nextIndexToRead = prevIndexRead; } } } catch (Exception e) { log.error("selectPhyOffset exception ", e); } finally { if (fileLock != null) { try { fileLock.release(); } catch (IOException e) { log.error("Failed to release the lock", e); } } this.mappedFile.release(); } } }
1、根据查询的 key 的 hashcode%slotNum 得到具体的槽的位置( slotNum 是一个索引文件里面包含的最大槽的数目,例如图中所示 slotNum=5000000)。
2、根据 slotValue( slot 位置对应的值)查找到索引项列表的最后一项(倒序排列, slotValue 总是指向最新的一个 索引项)。
3、遍历索引项列表返回查询时间范围内的结果集(默认一次最大返回的 32 条记彔)
4、Hash 冲突;寻找 key 的 slot 位置时相当于执行了两次散列函数,一次 key 的 hash,一次 key 的 hash 值取模,因此返里存在两次冲突的情况;第一种, key 的 hash 不同但模数相同,此时查询的时候会在比较一次key 的hash 值(每个索引项保存了 key 的 hash 值),过滤掉 hash 值不相等的项。第二种, hash 值相等但 key 不等,出于性能的考虑冲突的检测放到客户端处理( key 的原始值是存储在消息文件中的,避免对数据文件的解析),客户端比较一次消息体的 key 是否相同
2.4、checkpoint
checkpoint文件的作用是记录commitlog、consumequeue、index文件的刷盘时间点,文件固定长度4k,其中只用了该文件的前24个字节。查看其存储格式
physicMsgTimestamp
:commitlog文件刷盘时间点
logicsMsgTimestamp
:消息的消费队列文件刷盘时间点
indexMsgTimestamp
:索引文件刷盘时间点
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
基于Java实现ssh命令登录主机执行shell命令过程解析
这篇文章主要介绍了基于Java实现ssh命令登录主机执行shell命令过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-12-12Java日期工具类操作字符串Date和LocalDate互转
这篇文章主要介绍了Java日期工具类操作字符串Date和LocalDate互转,文章首先通过需要先引入坐标展开主题的相关内容介绍,需要的朋友可以参一下2022-06-06Spring扩展之基于HandlerMapping实现接口灰度发布实例
这篇文章主要介绍了Spring扩展之基于HandlerMapping实现接口灰度发布实例,灰度发布是指在黑与白之间,能够平滑过渡的一种发布方式,灰度发布可以保证整体系统的稳定,在初始灰度的时候就可以发现、调整问题,以保证其影响度,需要的朋友可以参考下2023-08-08解决Mybatis的serverTimezone时区出现问题
这篇文章主要介绍了解决Mybatis的serverTimezone时区出现问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2021-09-09
最新评论