Python利用ROI进行图像合成的问题小结

 更新时间:2021年07月06日 10:16:59   作者:三孚  
图像的 ROI (region of interest) 是指图像中感兴趣区域、在 OpenCV 中图像设置图像 ROI 区域,实现只对 ROI 区域操作,本文给大家介绍Python利用ROI进行图像合成的问题小结,感兴趣的朋友一起看看吧

之前使用seamlessClone来合成图片,但发现在两张图片的交集部分会出现一些小问题……

需求:

假设现在有一张图片(模板)中存在两个空格可以用来填照片(如下图所示):

在这里插入图片描述

图中,蓝色的圆圈和黄色的圆圈为需要替换的内容,其余部分可以视为一张png图片,且通过PS可知蓝圆黄圆的具体坐标,需要将下方的两张图片合成到上方的位置中:

在这里插入图片描述

ROI合成圆形区域

def input_circle_img(img, file_path, img_part_name, x, y, r):
    for file in os.listdir(file_path):
        if img_part_name in file:
            path = file_path + "\\" + file
            src = cv_imread(path)
            src = cv.resize(src, (r * 2 + 4, r * 2 + 4))
            h, w, ch = src.shape
            mask = np.zeros(src.shape[:2], dtype=np.uint8)
            mask = cv.circle(mask, (r + 1, r + 1), r, (255, 255, 255), -1)
            imgROI = img[(y - r):(y + r), (x - r):(x + r)]
            mask = mask/255.0
            a =  mask[..., None]
            for row in range(imgROI.shape[0]):
                for col in range(imgROI.shape[1]):
                    if a[row, col]:
                        imgROI[row, col] = src[row, col]
参数 说明
img 模板图片对象,即上文中的第一幅图片
file_path 需要替换的图片所在的文件路径,即上文中的1_测试.jpg和2_测试.jpg所在的文件夹路径
img_part_name 即需要替换的图片的(部分)文件名,比如我想换的是“1_测试.jpg”,则此参数可以为“1_”也可以为全名~(需要注意的是:填写的字符串尽量为文件夹中唯一的标识符,例如填“_测试”则可能导致想要的文件被其它图片所覆盖)
x 图片中心在模板中的横向位置(与模板左侧的距离)
y 图片中心在模板中的纵向位置(与模板上侧的距离)
r 图片出于模板中的实际半径

之所以+4是因为之前利用seamlessClone时边缘会收到原模板的影响,改成ROI后懒得该回去了,不加应该也没什么问题~

def export_comp_img(path):
    print("[START] export_comp_img ...")
    for file_path in os.listdir(path):
        file_path = path + "\\" + file_path
        # 创建画布方法,就是利用np.zeros,与本文无关就不放啦~
        img = create_img(2400, 3600)
        input_circle_img(img, file_path, "2_", 1862, 800, 440)
        input_circle_img(img, file_path, "1_", 1247, 558, 315)
        # input_rect_img(img, file_path, "3_", (0, 2202), (2400, 2944))
        # 保存图片方法,就是利用imencode,与本文无关就不放啦~
        save_img(img, file_path)

不出意外的话应该就可以得到下面的这张图片啦!~

在这里插入图片描述

然后再把模板的那张PNG图片盖到最上面——可以利用上文中mask的思路,也可以放到PS里面合成~这里一方面我需要在PS中进行后续的一些操作,另一方面也需要观察图片边缘的处理效果,因而选择了后者。

在这里插入图片描述

和模板里的位置完美对齐!~
PS:如果是除圆以外的不规则图形的话,可以通过改变mask实现——最粗暴的便是加载一张mask图片~
而若是单纯的矩形选区的话则无视mask即可~
至此完结!~下面是一些无关紧要的补充……

ROI合成矩形区域

def input_rect_img(img, file_path, img_part_name, start_point, end_point):
    for file in os.listdir(file_path):
        if img_part_name in file:
            path = file_path + "\\" + file
            src = cv_imread(path)
            h = end_point[1] - start_point[1]
            w = end_point[0] - start_point[0]
            src = cv.resize(src, (w, h))
            imgROI = img[start_point[1]:(start_point[1] + h),start_point[0]:(start_point[0] + w)]
            for row in range(imgROI.shape[0]):
                for col in range(imgROI.shape[1]):
                    imgROI[row, col] = src[row, col]

seamlessClone合成圆形区域

值得一提的是,一开始我用的是seamlessClone方法,但尝试了三种模式效果均不理想:

def input_circle_img_seamlessClone(img, file_path, img_part_name, x, y, r):
    for file in os.listdir(file_path):
        if img_part_name in file:
            path = file_path + "\\" + file
            src = cv_imread(path)
            src = cv.resize(src, (r * 2 + 4, r * 2 + 4))
            h, w, ch = src.shape
            mask = np.zeros(src.shape[:2], dtype=np.uint8)
            mask = cv.circle(mask, (r + 1, r + 1), r, (255, 255, 255), -1)
            center = (x, y)
            output = cv.seamlessClone(src, img, mask, center, cv.MIXED_CLONE)
            return output

MIXED_CLONE

在这里插入图片描述

NORMAL_CLONE

在这里插入图片描述

MONOCHROME_TRANSFER

在这里插入图片描述

NORMAL_CLONEMIXED_CLONE的区别主要看的是两个圆的交界处,但这两种方法的边缘都会有一个过渡的处理,不太适合套模板的时候用……

到此这篇关于Python利用ROI进行图像合成的文章就介绍到这了,更多相关Python图像合成内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 程序员的七夕用30行代码让Python化身表白神器

    程序员的七夕用30行代码让Python化身表白神器

    转眼又到了咱们中国传统的情人节七夕了,今天笔者就带大家来领略一下用Python表白的方式,感兴趣的朋友跟随小编一起看看吧
    2019-08-08
  • python实现线性回归算法

    python实现线性回归算法

    这篇文章主要为大家详细介绍了python实现线性回归算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-04-04
  • Python使用Vagrant搭建开发环境的具体步骤

    Python使用Vagrant搭建开发环境的具体步骤

    使用 Vagrant 搭建开发环境是一个非常方便的方式,它可以帮助你快速创建、配置和管理虚拟机,确保开发环境的一致性,以下是使用 Vagrant 搭建开发环境的具体步骤,需要的朋友可以参考下
    2024-09-09
  • Python中方法链的使用方法

    Python中方法链的使用方法

    这篇文章主要为大家详细介绍了Python中方法链的使用方法,方法链(method chaining)是面向对象的编程语言中的一种常见语法,对方法链感兴趣的小伙伴们可以参考一下
    2016-02-02
  • Python模拟实现高斯分布拟合

    Python模拟实现高斯分布拟合

    当我们绘制一个数据集(如直方图)时,图表的形状就是我们所说的分布,最常见的连续值形状是钟形曲线,也称为高斯分布或正态分布,下面我们就来利用Python模拟实现一下高斯分布吧
    2023-12-12
  • 详解numpy.meshgrid()方法使用

    详解numpy.meshgrid()方法使用

    这篇文章主要介绍了详解numpy.meshgrid()方法使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python selenium firefox使用详解

    python selenium firefox使用详解

    这篇文章主要介绍了python selenium firefox使用详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-02-02
  • 对命令行模式与python交互模式介绍

    对命令行模式与python交互模式介绍

    今天小编就为大家分享一篇对命令行模式与python交互模式介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python爬虫必备技巧详细总结

    Python爬虫必备技巧详细总结

    本篇文章介绍了我在爬虫过程中总结的几个必备技巧,都是经过实验的,通读本篇对大家的学习或工作具有一定的价值,需要的朋友可以参考下
    2021-10-10
  • Python环境配置实现pip加速过程解析

    Python环境配置实现pip加速过程解析

    这篇文章主要介绍了Python环境配置实现pip加速过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11

最新评论