C++实现LeetCode(46.全排列)

 更新时间:2021年07月14日 16:18:28   作者:全排列  
这篇文章主要介绍了C++实现LeetCode(46.全排列),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 46. Permutations 全排列

Given a collection of distinct integers, return all possible permutations.

Example:

Input: [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

这道题是求全排列问题,给的输入数组没有重复项,这跟之前的那道 Combinations 和类似,解法基本相同,但是不同点在于那道不同的数字顺序只算一种,是一道典型的组合题,而此题是求全排列问题,还是用递归 DFS 来求解。这里需要用到一个 visited 数组来标记某个数字是否访问过,然后在 DFS 递归函数从的循环应从头开始,而不是从 level 开始,这是和 Combinations 不同的地方,其余思路大体相同。这里再说下 level 吧,其本质是记录当前已经拼出的个数,一旦其达到了 nums 数组的长度,说明此时已经是一个全排列了,因为再加数字的话,就会超出。还有就是,为啥这里的 level 要从0开始遍历,因为这是求全排列,每个位置都可能放任意一个数字,这样会有个问题,数字有可能被重复使用,由于全排列是不能重复使用数字的,所以需要用一个 visited 数组来标记某个数字是否使用过,代码如下:

解法一:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res;
        vector<int> out, visited(num.size(), 0);
        permuteDFS(num, 0, visited, out, res);
        return res;
    }
    void permuteDFS(vector<int>& num, int level, vector<int>& visited, vector<int>& out, vector<vector<int>>& res) {
        if (level == num.size()) {res.push_back(out); return;}
        for (int i = 0; i < num.size(); ++i) {
            if (visited[i] == 1) continue;
            visited[i] = 1;
            out.push_back(num[i]);
            permuteDFS(num, level + 1, visited, out, res);
            out.pop_back();
            visited[i] = 0;
        }
    }
};

上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]] 。

还有一种递归的写法,更简单一些,这里是每次交换 num 里面的两个数字,经过递归可以生成所有的排列情况。这里你可能注意到,为啥在递归函数中, push_back() 了之后没有返回呢,而解法一或者是 Combinations 的递归解法在更新结果 res 后都 return 了呢?其实如果你仔细看代码的话,此时 start 已经大于等于 num.size() 了,而下面的 for 循环的i是从 start 开始的,根本就不会执行 for 循环里的内容,就相当于 return 了,博主偷懒就没写了。但其实为了避免混淆,最好还是加上,免得和前面的搞混了,代码如下:

解法二:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res;
        permuteDFS(num, 0, res);
        return res;
    }
    void permuteDFS(vector<int>& num, int start, vector<vector<int>>& res) {
        if (start >= num.size()) res.push_back(num);
        for (int i = start; i < num.size(); ++i) {
            swap(num[start], num[i]);
            permuteDFS(num, start + 1, res);
            swap(num[start], num[i]);
        }
    }
};

上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,2,1], [3,1,2]] 

最后再来看一种方法,这种方法是 CareerCup 书上的方法,也挺不错的,这道题是思想是这样的:

当 n=1 时,数组中只有一个数 a1,其全排列只有一种,即为 a1

当 n=2 时,数组中此时有 a1a2,其全排列有两种,a1a和 a2a1,那么此时考虑和上面那种情况的关系,可以发现,其实就是在 a的前后两个位置分别加入了 a

当 n=3 时,数组中有 a1a2a3,此时全排列有六种,分别为 a1a2a3, a1a3a2, a2a1a3, a2a3a1, a3a1a2, 和 a3a2a1。那么根据上面的结论,实际上是在 a1a和 a2a的基础上在不同的位置上加入 a而得到的。

_ a_ a_ : a3a1a2, a1a3a2, a1a2a3

_ a_ a_ : a3a2a1, a2a3a1, a2a1a3

解法三:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        if (num.empty()) return vector<vector<int>>(1, vector<int>());
        vector<vector<int>> res;
        int first = num[0];
        num.erase(num.begin());
        vector<vector<int>> words = permute(num);
        for (auto &a : words) {
            for (int i = 0; i <= a.size(); ++i) {
                a.insert(a.begin() + i, first);
                res.push_back(a);
                a.erase(a.begin() + i);
            }
        }   
        return res;
    }
};

上述解法的最终生成顺序为:[[1,2,3], [2,1,3], [2,3,1], [1,3,2], [3,1,2], [3,2,1]]

上面的三种解法都是递归的,我们也可以使用迭代的方法来做。其实下面这个解法就上面解法的迭代写法,核心思路都是一样的,都是在现有的排列的基础上,每个空位插入一个数字,从而生成各种的全排列的情况,参见代码如下:

解法四:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res{{}};
        for (int a : num) {
            for (int k = res.size(); k > 0; --k) {
                vector<int> t = res.front();
                res.erase(res.begin());
                for (int i = 0; i <= t.size(); ++i) {
                    vector<int> one = t;
                    one.insert(one.begin() + i, a);
                    res.push_back(one);
                }
            }
        }
        return res;
    }
};

上述解法的最终生成顺序为:[[3,2,1], [2,3,1], [2,1,3], [3,1,2], [1,3,2], [1,2,3]]

下面这种解法就有些耍赖了,用了 STL 的内置函数 next_permutation(),专门就是用来返回下一个全排列,耳边又回响起了诸葛孔明的名言,我从未见过如此...投机取巧...的解法!

解法五:

class Solution {
public:
    vector<vector<int>> permute(vector<int>& num) {
        vector<vector<int>> res;
        sort(num.begin(), num.end());
        res.push_back(num);
        while (next_permutation(num.begin(), num.end())) {
            res.push_back(num);
        }
        return res;
    }
};

上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

到此这篇关于C++实现LeetCode(46.全排列)的文章就介绍到这了,更多相关C++实现全排列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C++ min/max_element 函数用法详解

    C++ min/max_element 函数用法详解

    这篇文章主要介绍了C++ min/max_element 函数用法,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-02-02
  • C语言中 “_at()” 特殊地址定位详解

    C语言中 “_at()” 特殊地址定位详解

    这篇文章主要介绍了C语言中 “_at()” 特殊地址定位详解的相关资料,需要的朋友可以参考下
    2017-05-05
  • C++构造函数的初始化列表详解

    C++构造函数的初始化列表详解

    这篇文章主要为大家介绍了C++构造函数的初始化列表,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • 一波C语言字符数组实用技巧集锦

    一波C语言字符数组实用技巧集锦

    这篇文章主要介绍了一波C语言字符数组实用技巧集锦,包括许多字符的转换与提取等基本操作示例,需要的朋友可以参考下
    2016-04-04
  • C++中new的越界访问问题

    C++中new的越界访问问题

    越界访问指访问了不是程序申请的内存区域,比如申请了5个字节的char数组,结果读写数据的第六个元素,或者访问了释放后的内存等等。
    2016-04-04
  • C语言实现在控制台打印余弦曲线

    C语言实现在控制台打印余弦曲线

    余弦曲线又叫余弦波(cosinwave),是一种来自数学三角函数中的余弦比例的曲线。这篇文章主要为大家介绍了如何在控制台绘制余弦曲线,感兴趣的可以了解一下
    2023-02-02
  • c++中用TINYXML解析XML文件

    c++中用TINYXML解析XML文件

    这篇文章主要介绍了c++中如何用TINYXML解析XML文件,文中案例非常详细,帮助大家更好的了解和学习,感兴趣的朋友可以了解下
    2020-06-06
  • 总结c++性能优化策略

    总结c++性能优化策略

    在本篇文章中小编给大家总结了关于C++的性能优化策略的相关知识点,对此有兴趣的朋友可以参考学习下。
    2018-03-03
  • C语言中的正则表达式使用示例详解

    C语言中的正则表达式使用示例详解

    正则表达式是使用单个字符串来描述、匹配一系列符合某个句法规则的字符串。本文通过示例代码给大家介绍了C语言中的正则表达式使用,感兴趣的朋友跟随小编一起看看吧
    2019-07-07
  • c++中nlohmann json的基本使用教程

    c++中nlohmann json的基本使用教程

    nlohmann/json 是一个C++实现的JSON解析器,使用非常方便直观,下面这篇文章主要给大家介绍了关于c++中nlohmann json基本使用的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-09-09

最新评论