C++实现LeetCode(76.最小窗口子串)

 更新时间:2021年07月17日 14:33:07   作者:Grandyang  
这篇文章主要介绍了C++实现LeetCode(76.最小窗口子串),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 76. Minimum Window Substring 最小窗口子串

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

Example:

Input: S = "ADOBECODEBANC", T = "ABC"
Output: "BANC"

Note:

  • If there is no such window in S that covers all characters in T, return the empty string "".
  • If there is such window, you are guaranteed that there will always be only one unique minimum window in S.

这道题给了我们一个原字符串S,还有一个目标字符串T,让在S中找到一个最短的子串,使得其包含了T中的所有的字母,并且限制了时间复杂度为 O(n)。这道题的要求是要在 O(n) 的时间度里实现找到这个最小窗口字串,暴力搜索 Brute Force 肯定是不能用的,因为遍历所有的子串的时间复杂度是平方级的。那么来想一下,时间复杂度卡的这么严,说明必须在一次遍历中完成任务,当然遍历若干次也是 O(n),但不一定有这个必要,尝试就一次遍历拿下!那么再来想,既然要包含T中所有的字母,那么对于T中的每个字母,肯定要快速查找是否在子串中,既然总时间都卡在了 O(n),肯定不想在这里还浪费时间,就用空间换时间(也就算法题中可以这么干了,七老八十的富翁就算用大别野也换不来时间啊。依依东望,望的就是时间呐 T.T),使用 HashMap,建立T中每个字母与其出现次数之间的映射,那么你可能会有疑问,为啥不用 HashSet 呢,别急,讲到后面你就知道用 HashMap 有多妙,简直妙不可言~

目前在脑子一片浆糊的情况下,我们还是从简单的例子来分析吧,题目例子中的S有点长,换个短的 S = "ADBANC",T = "ABC",那么肉眼遍历一遍S呗,首先第一个是A,嗯很好,T中有,第二个是D,T中没有,不理它,第三个是B,嗯很好,T中有,第四个又是A,多了一个,礼多人不怪嘛,收下啦,第五个是N,一边凉快去,第六个终于是C了,那么貌似好像需要整个S串,其实不然,注意之前有多一个A,就算去掉第一个A,也没事,因为第四个A可以代替之,第二个D也可以去掉,因为不在T串中,第三个B就不能再去掉了,不然就没有B了。所以最终的答案就"BANC"了。通过上面的描述,你有没有发现一个有趣的现象,先扩展,再收缩,就好像一个窗口一样,先扩大右边界,然后再收缩左边界,上面的例子中右边界无法扩大了后才开始收缩左边界,实际上对于复杂的例子,有可能是扩大右边界,然后缩小一下左边界,然后再扩大右边界等等。这就很像一个不停滑动的窗口了,这就是大名鼎鼎的滑动窗口 Sliding Window 了,简直是神器啊,能解很多子串,子数组,子序列等等的问题,是必须要熟练掌握的啊!

下面来考虑用代码来实现,先来回答一下前面埋下的伏笔,为啥要用 HashMap,而不是 HashSet,现在应该很显而易见了吧,因为要统计T串中字母的个数,而不是仅仅看某个字母是否在T串中出现。统计好T串中字母的个数了之后,开始遍历S串,对于S中的每个遍历到的字母,都在 HashMap 中的映射值减1,如果减1后的映射值仍大于等于0,说明当前遍历到的字母是T串中的字母,使用一个计数器 cnt,使其自增1。当 cnt 和T串字母个数相等时,说明此时的窗口已经包含了T串中的所有字母,此时更新一个 minLen 和结果 res,这里的 minLen 是一个全局变量,用来记录出现过的包含T串所有字母的最短的子串的长度,结果 res 就是这个最短的子串。然后开始收缩左边界,由于遍历的时候,对映射值减了1,所以此时去除字母的时候,就要把减去的1加回来,此时如果加1后的值大于0了,说明此时少了一个T中的字母,那么 cnt 值就要减1了,然后移动左边界 left。你可能会疑问,对于不在T串中的字母的映射值也这么加呀减呀的,真的大丈夫(带胶布)吗?其实没啥事,因为对于不在T串中的字母,减1后,变-1,cnt 不会增加,之后收缩左边界的时候,映射值加1后为0,cnt 也不会减少,所以并没有什么影响啦,下面是具体的步骤啦:

- 先扫描一遍T,把对应的字符及其出现的次数存到 HashMap 中。

- 然后开始遍历S,就把遍历到的字母对应的 HashMap 中的 value 减一,如果减1后仍大于等于0,cnt 自增1。

- 如果 cnt 等于T串长度时,开始循环,纪录一个字串并更新最小字串值。然后将子窗口的左边界向右移,如果某个移除掉的字母是T串中不可缺少的字母,那么 cnt 自减1,表示此时T串并没有完全匹配。

解法一:

class Solution {
public:
    string minWindow(string s, string t) {
        string res = "";
        unordered_map<char, int> letterCnt;
        int left = 0, cnt = 0, minLen = INT_MAX;
        for (char c : t) ++letterCnt[c];
        for (int i = 0; i < s.size(); ++i) {
            if (--letterCnt[s[i]] >= 0) ++cnt;
            while (cnt == t.size()) {
                if (minLen > i - left + 1) {
                    minLen = i - left + 1;
                    res = s.substr(left, minLen);
                }
                if (++letterCnt[s[left]] > 0) --cnt;
                ++left;
            }
        }
        return res;
    }
};

这道题也可以不用 HashMap,直接用个 int 的数组来代替,因为 ASCII 只有256个字符,所以用个大小为 256 的 int 数组即可代替 HashMap,但由于一般输入字母串的字符只有 128 个,所以也可以只用 128,其余部分的思路完全相同,虽然只改了一个数据结构,但是运行速度提高了一倍,说明数组还是比 HashMap 快啊。还可以进一步的优化,没有必要每次都计算子串,只要有了起始位置和长度,就能唯一的确定一个子串。这里使用一个全局变量 minLeft 来记录最终结果子串的起始位置,初始化为 -1,最终配合上 minLen,就可以得到最终结果了。注意在返回的时候要检测一下若 minLeft 仍为初始值 -1,需返回空串,参见代码如下:

解法二:

class Solution {
public:
    string minWindow(string s, string t) {
        vector<int> letterCnt(128, 0);
        int left = 0, cnt = 0, minLeft = -1, minLen = INT_MAX;
        for (char c : t) ++letterCnt[c];
        for (int i = 0; i < s.size(); ++i) {
            if (--letterCnt[s[i]] >= 0) ++cnt;
            while (cnt == t.size()) {
                if (minLen > i - left + 1) {
                    minLen = i - left + 1;
                    minLeft = left;
                }
                if (++letterCnt[s[left]] > 0) --cnt;
                ++left;
            }
        }
        return minLeft == -1 ? "" : s.substr(minLeft, minLen);
    }
};

到此这篇关于C++实现LeetCode(76.最小窗口子串)的文章就介绍到这了,更多相关C++实现最小窗口子串内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C++ DLL注入工具(完整源码)

    C++ DLL注入工具(完整源码)

    这篇文章主要介绍了C++ DLL注入工具的相关资料,并向大家分享了完整的源码,具有一定的参考价值,希望对正在工作或学习的你有所帮助
    2022-02-02
  • C++ 详细讲解stack与queue的模拟实现

    C++ 详细讲解stack与queue的模拟实现

    C++ Stack(堆栈) 是一个容器类的改编,为程序员提供了堆栈的全部功能,也就是说实现了一个先进后出(FILO)的数据结构,许多程序都使用了 queue 容器。queue 容器可以用来表示超市的结账队列或服务器上等待执行的数据库事务队列
    2022-04-04
  • Qt实现简单的TCP通信

    Qt实现简单的TCP通信

    这篇文章主要为大家详细介绍了Qt实现简单的TCP通信,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • Qt中QStringList与QString的常用方法总结

    Qt中QStringList与QString的常用方法总结

    这篇文章主要为大家总结了Qt中QString 与 (QStringList | QByteArray)之间的转换,以及QString、QStringList的一些常用方法,感兴趣的可以收藏一下
    2022-12-12
  • VC++的combobox控件用法汇总

    VC++的combobox控件用法汇总

    这篇文章主要介绍了VC++的combobox控件用法,对VC++初学者来说尤为重要,需要的朋友可以参考下
    2014-08-08
  • 数据结构 中数制转换(栈的应用)

    数据结构 中数制转换(栈的应用)

    这篇文章主要介绍了数据结构 中数制转换(栈的应用)的相关资料,需要的朋友可以参考下
    2017-06-06
  • Qt数据库应用之实现通用数据库清理

    Qt数据库应用之实现通用数据库清理

    项目如果需要存储很多日志记录比如运行日志,时间长了记录数量非常多,数据库体积不断增大,对应数据库表的增删改查的效率不断降低,因此需要将早期的数据清理。本文将详细介绍一下通用数据库清理的实现,需要的可以参考一下
    2022-02-02
  • C语言细致讲解线程同步的集中方式

    C语言细致讲解线程同步的集中方式

    多线程中的线程同步可以使用,CreateThread,CreateMutex 互斥锁实现线程同步,通过临界区实现线程同步,Semaphore 基于信号实现线程同步,CreateEvent 事件对象的同步,以及线程函数传递单一参数与多个参数的实现方式
    2022-05-05
  • 使用C语言如何输出逆序数

    使用C语言如何输出逆序数

    逆序数的就是把一个数倒过来,例如:1234那么它的逆序数就为4321,我们该如何是实现呢?下面这篇文章主要给大家介绍了关于使用C语言如何输出逆序数的相关资料,需要的朋友可以参考下
    2022-01-01
  • QT实战之打开最近图片功能的实现

    QT实战之打开最近图片功能的实现

    这篇文章主要为大家详细介绍了如何利用Qt和QSettings实现打开最近图片功能,文中的示例代码讲解详细,对我们学习QT有一定的帮助,感兴趣的可以了解一下
    2022-06-06

最新评论