C++实现LeetCode(123.买股票的最佳时间之三)

 更新时间:2021年07月26日 15:27:14   作者:Grandyang  
这篇文章主要介绍了C++实现LeetCode(123.买股票的最佳时间之三),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 123.Best Time to Buy and Sell Stock III 买股票的最佳时间之三

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道 Best Time to Buy and Sell Stock 和 Best Time to Buy and Sell Stock II 的思路都非常的简洁明了,算法也很简单。而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优,代码如下:

解法一:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if (prices.empty()) return 0;
        int n = prices.size(), g[n][3] = {0}, l[n][3] = {0};
        for (int i = 1; i < prices.size(); ++i) {
            int diff = prices[i] - prices[i - 1];
            for (int j = 1; j <= 2; ++j) {
                l[i][j] = max(g[i - 1][j - 1] + max(diff, 0), l[i - 1][j] + diff);
                g[i][j] = max(l[i][j], g[i - 1][j]);
            }
        }
        return g[n - 1][2];
    }
};

下面这种解法用一维数组来代替二维数组,可以极大的节省了空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值,参见代码如下:

解法二:

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if (prices.empty()) return 0;
        int g[3] = {0};
        int l[3] = {0};
        for (int i = 0; i < prices.size() - 1; ++i) {
            int diff = prices[i + 1] - prices[i];
            for (int j = 2; j >= 1; --j) {
                l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff);
                g[j] = max(l[j], g[j]);
            }
        }
        return g[2];
    }
};

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0 

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2 

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2 

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9 

global:  0 2 9       global:  0 8 9

其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

类似题目:

Best Time to Buy and Sell Stock with Cooldown

Best Time to Buy and Sell Stock IV

Best Time to Buy and Sell Stock II

Best Time to Buy and Sell Stock

参考资料:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

到此这篇关于C++实现LeetCode(123.买股票的最佳时间之三)的文章就介绍到这了,更多相关C++实现买股票的最佳时间之三内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Qt5开发视频播放器的项目实践

    Qt5开发视频播放器的项目实践

    Qt对音视频的播放和控制、相机拍摄、收音机等多媒体应用提供了强大的支持,本文主要介绍了Qt5开发视频播放器,具有一定的参考价值,感兴趣的可以了解一下
    2023-08-08
  • 详解如何使用C++写一个线程安全的单例模式

    详解如何使用C++写一个线程安全的单例模式

    这篇文章主要为大家详细介绍了如何使用C++写一个线程安全的单例模式,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解一下
    2022-10-10
  • C语言如何在字符数组中插入一个字符

    C语言如何在字符数组中插入一个字符

    这篇文章主要介绍了C语言如何在字符数组中插入一个字符,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-06-06
  • C语言约瑟夫环的实现

    C语言约瑟夫环的实现

    这篇文章主要介绍了C语言约瑟夫环的实现的相关资料,这里主要是利用数据数据结果中循环链表来实现,需要的朋友可以参考下
    2017-08-08
  • 超详细的c语言字符串操作函数教程

    超详细的c语言字符串操作函数教程

    字符串是一种重要的数据类型,有零个或多个字符组成的有限串行,下面这篇文章主要给大家介绍了关于c语言字符串操作函数的相关资料,需要的朋友可以参考下
    2021-10-10
  • Visual Studio 2022 配置 PCL 1.12.1 的问题小结

    Visual Studio 2022 配置 PCL 1.12.1 的问题小结

    这篇文章主要介绍了Visual Studio 2022 配置 PCL 1.12.1 的经验总结分享,本文通过图文实例相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-08-08
  • Visual studio2022 利用glfw+glad配置OpenGL环境的详细过程

    Visual studio2022 利用glfw+glad配置OpenGL环境的详细过程

    这篇文章主要介绍了Visual studio2022 利用glfw+glad配置OpenGL环境,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-10-10
  • C++常用函数总结(algorithm 头文件)

    C++常用函数总结(algorithm 头文件)

    本文给大家详细介绍了algorithm 头文件中最常用的函数及其使用方法,当然这只是其中的一部分,algorithm 头文件中还有很多其他的函数,感兴趣的朋友一起看看吧
    2023-12-12
  • Qt6.0 qproperty-*不生效原因解决分析

    Qt6.0 qproperty-*不生效原因解决分析

    这篇文章主要为大家介绍了Qt6.0 qproperty-*不生效原因解决分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • Qt开发之QString类的使用教程详解

    Qt开发之QString类的使用教程详解

    本文主要介绍了Qt中QString类的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-11-11

最新评论