pandas求平均数和中位数的方法实例

 更新时间:2021年08月03日 10:45:47   作者:不思量自难忘  
pandas对象拥有一组常用的数学和统计方法,大部分都属于约简和汇总统计,这篇文章主要给大家介绍了关于pandas求平均数和中位数的相关资料,需要的朋友可以参考下

准备

pandas是一个强大的Python数据分析的工具包。

pandas是基于NumPy构建的。

pandas的主要功能

  • 具备对其功能的数据结构DataFrame、Series
  • 集成时间序列功能
  • 提供丰富的数学运算和操作
  • 灵活处理缺失数据

本文用到的表格内容如下:

先来看一下原始情形:

import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45
1  家电           电视机      56    784  34  156
2  家电            冰箱      78    345  24  785
3  书籍  python从入门到放弃      25     34  13   89
4  水果            葡萄     789     56   7  398

1.求平均数

1.1对全表进行操作

1.1.1求取每列的平均数
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.mean())

result:

实体店销售量    196.4
线上销售量     290.6
成本         18.0
售价        294.6
dtype: float64

1.1.2 求取每行的平均数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.mean(axis=1))

result:

0     81.25
1    257.50
2    308.00
3     40.25
4    312.50
dtype: float64

先看运行结果,我们可以看到,每一行求平均数的时候直接忽略文本字符类型的列,只对数字类型的列进行求平均数。就比如第一行的数据

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45

上面的81.25=(34+234+12+45) / 4,,其他的行也是如此

1.2 对单独的一行或者一列进行操作

1.2.1 求取单独某一列的平均数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].mean())

result:

196.4

1.2.2 求取单独某一行的平均数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].mean())

result:

实体店销售量     34.0
线上销售量     234.0
成本         12.0
售价         45.0
dtype: float64

1.3 对多行或者多列进行操作

1.3.1 求取多列的平均数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].mean())

result:

实体店销售量    196.4
线上销售量     290.6
dtype: float64

1.3.2 求取多行的平均数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].mean())

result:

实体店销售量     45.0
线上销售量     509.0
成本         23.0
售价        100.5
dtype: float64

2 求中位数

2.1对全表进行操作

2.1.1对每一列求中位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.median())

result:

实体店销售量     56.0
线上销售量     234.0
成本         13.0
售价        156.0
dtype: float64

可以看到,中位数的概念只对数字有效

2.1.2 对每一行求中位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.median(axis=1))

result:

0     39.5
1    106.0
2    211.5
3     29.5
4    227.0
dtype: float64

2.2 对单独的一行或者一列进行操作

2.2.1 对某一列求中位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].median())

result:

56.0

2.2.2 对某一行求中位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].median())

result:

实体店销售量     34.0
线上销售量     234.0
成本         12.0
售价         45.0
dtype: float64

2.3 对多行或者多列进行操作

2.3.1 对多列求中位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].median())

result:

实体店销售量     56.0
线上销售量     234.0
dtype: float64

2.3.2 对多行求中位数

df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].median())

result:

实体店销售量     45.0
线上销售量     509.0
成本         23.0
售价        100.5
dtype: float64

总结

到此这篇关于pandas求平均数和中位数的文章就介绍到这了,更多相关pandas求平均数中位数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python列表推导和生成器表达式知识点总结

    python列表推导和生成器表达式知识点总结

    在本篇文章里小编给大家整理的是关于python列表推导和生成器表达式的相关知识点内容,需要的朋友们可以参考下。
    2020-01-01
  • python小程序之飘落的银杏

    python小程序之飘落的银杏

    这篇文章主要介绍了利用制作的python小程序-飘落的银杏,代码详细,简单易懂,有需要练习python的朋友可以参考下
    2021-04-04
  • python 公共方法汇总解析

    python 公共方法汇总解析

    这篇文章主要介绍了python 公共方法汇总解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • python实现简单聊天室功能 可以私聊

    python实现简单聊天室功能 可以私聊

    这篇文章主要为大家详细介绍了python实现简单聊天室功能,可以进行私聊,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-07-07
  • Python多进程共享numpy 数组的方法

    Python多进程共享numpy 数组的方法

    这篇文章主要介绍了Python多进程共享numpy 数组的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-07-07
  • python实现顺序表的简单代码

    python实现顺序表的简单代码

    这篇文章主要为大家详细介绍了顺序表定义及python实现代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • python __init__与 __new__的区别

    python __init__与 __new__的区别

    本文主要介绍了python __init__与 __new__的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • 使用Python操作Excel中图片的基础示例(插入、替换、提取、删除)

    使用Python操作Excel中图片的基础示例(插入、替换、提取、删除)

    Excel是主要用于处理表格和数据的工具,我们也能在其中插入、编辑或管理图片,为工作表增添视觉效果,提升报告的吸引力,本文将详细介绍如何使用Python操作Excel中的图片,文中有详细代码示例供大家参考,需要的朋友可以参考下
    2024-07-07
  • python math模块的基本使用教程

    python math模块的基本使用教程

    这篇文章主要介绍了python math模块的基本使用教程,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-01-01
  • 关于Python常用模块时间模块time

    关于Python常用模块时间模块time

    这篇文章主要介绍了关于Python常用模块时间模块time,这个模块是Python自带的,我们不需要去下载,直接导入就可以使用,需要的朋友可以参考下
    2023-04-04

最新评论