Anaconda配置各版本Pytorch的实现

 更新时间:2021年08月06日 10:41:35   作者:桥上风景窗前人  
本文是整理目前全版本pytorch深度学习环境配置指令,以下指令适用Windows操作系统,在Anaconda Prompt中运行,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

1. 前言

利用 Anaconda 配置 Pytorch 深度学习环境时利用官网链接给出的安装指令安装会很慢,而且经常报错,为此整理目前全版本 pytorch 深度学习环境配置指令,以下指令适用 Windows 操作系统,在 Anaconda Prompt 中运行。

2. 配置镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

3. pytorch,torchvision,python 版本对应

pytorch,torchvision,python 三者的对应关系来源于 pytorch 官方 github,链接:https://github.com/pytorch/vision#installation

在这里插入图片描述

4. 创建并进入虚拟环境

创建一个虚拟环境,其中 pt 是自定义虚拟环境名称,另外根据踩坑经验 python 3.6.5 版本可以适配所有版本的 pytorch,建议创建环境时 python 解释器版本选择 3.6.5 版本。

conda create -n pt python=3.6.5

随后点击 y 同意安装,等待一会进入虚拟环境。

activate pt

5. Pytorch 0.4.1

conda install pytorch==0.4.1 torchvision==0.2.1 cuda90  # CUDA 9.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda92  # CUDA 9.2
conda install pytorch==0.4.1 torchvision==0.2.1 cuda80  # CUDA 8.0
conda install pytorch==0.4.1 torchvision==0.2.1 cuda75  # CUDA 7.5
conda install pytorch==0.4.1 torchvision==0.2.1 cpuonly  # CPU 版本

6. Pytorch 1.0.0

conda install pytorch==1.0.0 torchvision==0.2.1 cuda100  # CUDA 10.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda90  # CUDA 9.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80  # CUDA 8.0
conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly  # CPU 版本

7. Pytorch 1.0.1

conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0  # CUDA 9.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly  # CPU 版本

8. Pytorch 1.1.0

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0  # CUDA 9.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly  # CPU O版本

9. Pytorch 1.2.0

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0  # CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly  # CPU 版本

10. Pytorch 1.4.0

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly  # CPU 版本

11. Pytorch 1.5.0

conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly  # CPU 版本

12. Pytorch 1.5.1

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly  # CPU 版本

13. Pytorch 1.6.0

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly  # CPU 版本

14. Pytorch 1.7.0

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0  # CUDA 11.0
conda install pytorch==1.7.0 torchvision==0.8.0 cpuonly  # CPU 版本

15. Pytorch 1.7.1

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=9.2  # CUDA 9.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1  # CUDA 10.1
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0  # CUDA 11.0
conda install pytorch==1.7.1 torchvision==0.8.2 cpuonly  # CPU 版本

16. Pytorch 1.8.0

conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1  # CUDA 11.1
conda install pytorch==1.8.0 torchvision==0.9.0 cpuonly  # CPU 版本

17. Pytorch 1.9.0

conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=10.2  # CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1  # CUDA 11.1
conda install pytorch==1.9.0 torchvision==0.10.0 cpuonly  # CPU 版本

18. 测试是否安装成功

  • CPU 版本测试:继续运行 python 进入交互式环境,分别运行 import torchimport torchvision 不报错则安装成功。
  • GPU 版本测试:继续运行 python 进入交互式环境,分别运行 import torchimport torchvision 不报错, 再运行 print(torch.cuda.is_available()) 输出 Ture 则表示安装成功。

到此这篇关于Anaconda配置各版本Pytorch的实现的文章就介绍到这了,更多相关Anaconda配置Pytorch内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python3.5绘制随机漫步图

    python3.5绘制随机漫步图

    这篇文章主要为大家详细介绍了python3.5绘制随机漫步图,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-08-08
  • 解决PyCharm IDE环境下,执行unittest不生成测试报告的问题

    解决PyCharm IDE环境下,执行unittest不生成测试报告的问题

    这篇文章主要介绍了解决PyCharm IDE环境下,执行unittest不生成测试报告的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-09-09
  • python批量下载图片的三种方法

    python批量下载图片的三种方法

    用python批量下载一个网页中的图片,需要用到扩展库来解析html代码
    2013-04-04
  • python一行sql太长折成多行并且有多个参数的方法

    python一行sql太长折成多行并且有多个参数的方法

    今天小编就为大家分享一篇python一行sql太长折成多行并且有多个参数的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Pycharm新建模板默认添加个人信息的实例

    Pycharm新建模板默认添加个人信息的实例

    今天小编就为大家分享一篇Pycharm新建模板默认添加个人信息的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 详解如何用django实现redirect的几种方法总结

    详解如何用django实现redirect的几种方法总结

    这篇文章主要介绍了如何用django实现redirect的几种方法总结,详细的介绍3种实现方式,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-11-11
  • 详解Python中的四种队列

    详解Python中的四种队列

    队列是一种只允许在一端进行插入操作,而在另一端进行删除操作的线性表。这篇文章主要介绍了Python中的四种队列,需要的朋友可以参考下
    2018-05-05
  • python中的GUI实现计算器

    python中的GUI实现计算器

    这篇文章主要介绍了如何利用python中的GUI实现计算器,文章教大家用用python的GUI做界面布局,计算器代码熟悉控件的使用方法、优化计算器代码,解决获取按钮文本的方法,具有一定的参考价值,需要的朋友可以参考一下
    2021-12-12
  • python webp图片格式转化的方法

    python webp图片格式转化的方法

    这篇文章主要为大家详细介绍了python webp图片格式转化的方法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-04-04
  • wxpython 最小化到托盘与欢迎图片的实现方法

    wxpython 最小化到托盘与欢迎图片的实现方法

    这篇文章主要分享一个python实例代码,使用wxpython实现最小化到托盘与欢迎图片,需要的朋友可以参考下
    2014-06-06

最新评论