堆排序原理及算法代码详解

 更新时间:2021年08月11日 14:46:49   作者:抽离的心  
这篇文章主要介绍了堆排序算法的讲解及Java版实现,堆排序基于堆这种数据结构,在本文中对堆的概念也有补充介绍,需要的朋友可以参考下

一、堆排序算法原理和动态图解

将待排序的序列构造成一个大顶堆。此时,整个序列的最大值就是堆顶的根节点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的次最大值。如此反复执行,就能得到一个有序序列了。这个过程其实就是先构建一个最大/最小二叉堆,然后不停的取出最大/最小元素(头结点),插入到新的队列中,以此达到排序的目的。如下图所示:

二、二叉树定义

要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)。树和二叉树的三个主要差别:

  • 树的结点个数至少为 1,而二叉树的结点个数可以为 0
  • 树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
  • 树的结点无左、右之分,而二叉树的结点有左、右之分

1.满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树,即每一层上的节点数都是最大节点数。如下图b所示:深度为3的满二叉树。

2.完全二叉树:而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树(Complete Binary Tree)。如下图a所示:是一个深度为4的完全二叉树。

三、堆的定义

堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

对于7在数组存放的position=2,而它的子元素6的position=5=2*2[也就是父元素存放的位置]+1、子元素4的position=6=2*2[也就是父元素存放的位置]+2;同样对于11在在数组存放的position=0,而它的子元素10的position=1=2*0[也就是父元素存放的位置]+1、子元素7的position=2=2*0[也就是父元素存放的位置]+2;所以对于i个元素,它的左右子节点在下标以0开始的数组中的位置分别为:2*i+1、2*i+2。那脑补一下,对于不完全二叉树,如果用数组来存放会有什么问题呢?当然是中间有很多空的元素啦,所以说对于不完全二叉树最好是用链表来存储~。

堆的构建过程示例:建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开始,假设有数组A = {1, 3, 4, 5, 7, 2, 6, 8, 0}。那么调堆的过程如下图,数组下标从0开始,A[3] = 5开始。分别与左孩子和右孩子比较大小,如果A[3]最大,则不用调整,否则和孩子中的值最大的一个交换位置,在图1中是A[7] > A[3] > A[8],所以A[3]与A[7]对换,从图1.1转到图1.2。

二叉堆(英语:binary heap)是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。二叉堆一般用数组来表示。如果根节点在数组中的位置是1,第n个位置的子节点分别在2n和 2n+1。因此,第1个位置的子节点在2和3,第2个位置的子节点在4和5。以此类推。这种基于1的数组存储方式便于寻找父节点和子节点。如果存储数组的下标基于0,那么下标为i的节点的子节点是2i + 1与2i + 2;其父节点的下标是⌊floor((i − 1) ∕ 2)⌋。函数floor(x)的功能是“向下取整”,或者说“向下舍入”,即取不大于x的最大整数(与“四舍五入”不同,向下取整是直接取按照数轴上最接近要求值的左边值,即不大于要求值的最大的那个值)。比如floor(1.1)、floor(1.9)都返回1。对于堆定义中的堆结构插入元素:对于二叉堆来说,要插入一个新元素其整个过程是怎么样的呢?这里还是以我们之前的那个二叉堆进行说明,以插入"9"为例:

目前肯定不满足二叉堆的要求,父接点6是小于新插入的节点9的,所以两者进行位置交换:

同样的思路,父节点7比子节点9要小,所以需要调换位置:

至此元素插入完成,也符合二叉堆父元素大于子元素的规则,从添加过程中可以发现:只需更改待比较的元素,其它的任何元素位置不需要动,所以效率还是很高的。对于堆定义中的堆结构删除元素:这里以删除根结点为例【因为删除根节点是最重要的,所以以它为例】,整个过程如下:

这时当然是不符合二叉堆的规则,接着这样来做:

同理继续进行处理:

继续:

经过这些动作之后就将一个根结点给删除掉了,可以发现其实跟插入一个元素一样,只需更改待比较的元素,其它的任何元素位置不需要动,那像这种每次移除掉最大的值有啥用呢?堆排序就产生了,因为每次从根节点拿肯定是最大的数【以最大堆来说】,这样拿出来的数就成了一个有序的数列了。注意:对于一个很大的堆,这种存储是低效的。因为节点的子节点很可能在另外一个内存页中。B-heap是一种效率更高的存储方式,把每个子树放到同一内存页。如果用指针链表存储堆,那么需要能访问叶节点的方法。可以对二叉树“穿线”(threading)方式,来依序遍历这些节点。

四、堆排序Java代码实现

package com.luna.sort;
public class HeapSortMaxAndMin{
	public static void main(String[] args) {
		int[] array = { 19, 38, 7, 36, 5, 5, 3, 2, 1, 0, 56 };
		System.out.println("排序前:");
		for (int i = 0; i < array.length; i++) {
			System.out.print(array[i] + ",");
		}
		System.out.println();
		System.out.println("分割线---------------");
		heapSort(array);
		System.out.println("排序后:");
		for (int i = 0; i < array.length; i++) {
			System.out.print(array[i] + ",");
		}
	}
	public static void heapSort(int[] array) {
		if (array == null || array.length == 1)
			return;
		buildArrayToHeap(array); //将数组元素转化为大顶堆/小顶堆
		for (int i = array.length - 1; i >= 1; i--) {
			// 经过上面的一些列操作,目前array[0]是当前数组里最大的元素,需要和末尾的元素交换,然后拿出最大的元素
			swap(array, 0, i);
			/**
			 * 交换完后,下次遍历的时候,就应该跳过最后一个元素,也就是最大的那个
			 * 值,然后开始重新构建最大堆堆的大小就减去1,然后从0的位置开始最大堆
			 */
//			buildMaxHeap(array, i, 0);
			buildMinHeap(array, i, 0);
		}
	}
	// 构建堆
	public static void buildArrayToHeap(int[] array) {
		if (array == null || array.length == 1)
			return;
		//递推公式就是 int root = 2*i, int left = 2*i+1, int right = 2*i+2;
		int cursor = array.length / 2;
		for (int i = cursor; i >= 0; i--) { // 这样for循环下,就可以第一次排序完成
//			buildMaxHeap(array, array.length, i);
			buildMinHeap(array, array.length, i);
		}
	}
	//大顶堆
	public static void buildMaxHeap(int[] array, int heapSieze, int index) {
		int left = index * 2 + 1; // 左子节点
		int right = index * 2 + 2; // 右子节点
		int maxValue = index; // 暂时定在Index的位置就是最大值
		// 如果左子节点的值,比当前最大的值大,就把最大值的位置换成左子节点的位置
		if (left < heapSieze && array[left] > array[maxValue]) {
			maxValue = left;
		}
		// 如果右子节点的值,比当前最大的值大,就把最大值的位置换成右子节点的位置
		if (right < heapSieze && array[right] > array[maxValue]) {
			maxValue = right;
		}
		// 如果不相等说明,这个子节点的值有比自己大的,位置发生了交换了位置
		if (maxValue != index) {
			swap(array, index, maxValue); // 就要交换位置元素
			// 交换完位置后还需要判断子节点是否打破了最大堆的性质。最大堆性质:两个子节点都比父节点小。
			buildMaxHeap(array, heapSieze, maxValue);
		}
	}
	//小顶堆
	public static void buildMinHeap(int[] array, int heapSieze, int index) {
		int left = index * 2 + 1; // 左子节点
		int right = index * 2 + 2; // 右子节点
		int maxValue = index; // 暂时定在Index的位置就是最小值
		// 如果左子节点的值,比当前最小的值小,就把最小值的位置换成左子节点的位置
		if (left < heapSieze && array[left] < array[maxValue]) {
			maxValue = left;
		}
		// 如果右子节点的值,比当前最小的值小,就把最小值的位置换成左子节点的位置
		if (right < heapSieze && array[right] < array[maxValue]) {
			maxValue = right;
		}
		// 如果不相等说明这个子节点的值有比自己小的,位置发生了交换了位置
		if (maxValue != index) {
			swap(array, index, maxValue); // 就要交换位置元素
			// 交换完位置后还需要判断子节点是否打破了最小堆的性质。最小性质:两个子节点都比父节点大。
			buildMinHeap(array, heapSieze, maxValue);
		}
	}
	// 数组元素交换
	public static void swap(int[] a, int i, int j) {
		int temp = a[i];
		a[i] = a[j];
		a[j] = temp;
	}
}

大顶堆优化实现算法:

import java.util.Arrays;
public class MaxHeapSort {
    private int[] arr;
    public MaxHeapSort(int[] arr){
        this.arr = arr;
    }
    /**
     * 堆排序的主要入口方法,共两步。
     */
    public void sort(){
        /*
         *  第一步:将数组堆化
         *  beginIndex = 第一个非叶子节点。
         *  从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
         *  叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
         */
        int len = arr.length - 1;
        int beginIndex = (len - 1) >> 1; 
        for(int i = beginIndex; i >= 0; i--){
            maxHeapify(i, len);
        }
        /*
         * 第二步:对堆化数据排序
         * 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
         * 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
         * 直至未排序的堆长度为 0。
         */
        for(int i = len; i > 0; i--){
            swap(0, i);
            maxHeapify(0, i - 1);
        }
    }
    private void swap(int i,int j){
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    /**
     * 调整索引为 index 处的数据,使其符合堆的特性。
     * @param index 需要堆化处理的数据的索引
     * @param len 未排序的堆(数组)的长度
     */
    private void maxHeapify(int index,int len){
        int li = (index << 1) + 1; // 左子节点索引
        int ri = li + 1;           // 右子节点索引
        int cMax = li;             // 子节点值最大索引,默认左子节点。
        if(li > len) return;       // 左子节点索引超出计算范围,直接返回。
        if(ri <= len && arr[ri] > arr[li]) // 先判断左右子节点,哪个较大。
            cMax = ri;
        if(arr[cMax] > arr[index]){
            swap(cMax, index);      // 如果父节点被子节点调换,
            maxHeapify(cMax, len);  // 则需要继续判断换下后的父节点是否符合堆的特性。
        }
    }
    /**
     * 测试用例
     * 输出:
     * [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9]
     */
    public static void main(String[] args) {
        int[] arr = new int[]{3,5,3,0,8,6,1,5,8,6,2,4,9,4,7,0,1,8,9,7,3,1,2,5,9,7,4,0,2,6};        
        new MaxHeapSort(arr).sort();        
        System.out.println(Arrays.toString(arr));
    }
}

总结

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注脚本之家的更多内容!

相关文章

  • Netty分布式pipeline管道传播事件的逻辑总结分析

    Netty分布式pipeline管道传播事件的逻辑总结分析

    这篇文章主要为大家介绍了Netty分布式pipeline管道传播事件总结分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-03-03
  • 基于list stream: reduce的使用实例

    基于list stream: reduce的使用实例

    这篇文章主要介绍了list stream: reduce的使用实例,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-09-09
  • 一文彻底搞定Java中常用集合的排序方法

    一文彻底搞定Java中常用集合的排序方法

    在某些特殊的场景下我们需要在Java程序中对List集合进行排序操作,下面这篇文章主要给大家介绍了关于Java中常用集合的排序方法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2023-11-11
  • JDK输入命令Javac报错的解决方法

    JDK输入命令Javac报错的解决方法

    相信很多人都经历过配置环境变量失败的经历,尤其是很多时候明明按照老师教的步骤或者教程上的方法循规守矩配置却还是出错,下面我们来解决一个非常蹊跷的问题---输入Java和Java -version都没问题,但是输入Javac报错,感兴趣的朋友一起看看吧
    2023-11-11
  • 如何用java程序(JSch)运行远程linux主机上的shell脚本

    如何用java程序(JSch)运行远程linux主机上的shell脚本

    这篇文章主要介绍了如何用java程序(JSch)运行远程linux主机上的shell脚本,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-08-08
  • java使用iterator遍历指定目录示例分享

    java使用iterator遍历指定目录示例分享

    这篇文章主要介绍了java使用iterator遍历指定目录示例,需要的朋友可以参考下
    2014-04-04
  • 聊聊注解@controller@service@component@repository的区别

    聊聊注解@controller@service@component@repository的区别

    这篇文章主要介绍了聊聊注解@controller@service@component@repository的区别,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-08-08
  • Java正则表达式API边界匹配

    Java正则表达式API边界匹配

    这篇文章主要介绍了Java正则表达式API边界匹配,文章围绕主题展开相应的相关资料,具有一定的参考价值,需要的朋友可以参考一下
    2022-06-06
  • Spring Boot Filter 过滤器的使用方式

    Spring Boot Filter 过滤器的使用方式

    这篇文章主要介绍了Spring Boot Filter 过滤器的使用方式,文章通过围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-09-09
  • 详解Java反射各种应用

    详解Java反射各种应用

    Java除了给我们提供在编译期得到类的各种信息之外,还通过反射让我们可以在运行期间得到类的各种信息。通过反射获取类的信息,得到类的信息之后,就可以获取很多相关内容。下面跟着小编一起来看下吧
    2017-01-01

最新评论