python超参数优化的具体方法

 更新时间:2021年08月15日 11:05:21   作者:小妮浅浅  
在本篇文章里小编给大家整理了一篇关于python超参数优化的具体方法,有需要的朋友们可以学习下。

1、手动调参,但这种方法依赖于大量的经验,而且比较费时。

许多情况下,工程师依靠试错法手工调整超参数进行优化,有经验的工程师可以在很大程度上判断如何设置超参数,从而提高模型的准确性。

2、网格化寻优,是最基本的超参数优化方法。

利用这种技术,我们只需要为所有超参数的可能性建立一个独立的模型,评估每个模型的性能,选择产生最佳结果的模型和超参数。

from sklearn.datasets import load_iris
from sklearn.svm import SVC
iris = load_iris()
svc = SVR()
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVR
grid = GridSearchCV(
        estimator=SVR(kernel='rbf'),
        param_grid={
            'C': [0.1, 1, 100, 1000],
            'epsilon': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10],
            'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5]
        },
        cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)

3、随机寻优,可以更准确地确定某些重要超参数的最佳值。

并非所有的超参数都有同样的重要性,有些超参数的作用更加明显。

知识点扩充:

贝叶斯优化方法

简单地说,贝叶斯优化通过基于过去对目标的评估结果建立一个代理函数(概率模型)找到使得目标函数最小的值。代理函数比目标函数更易于优化,因此下一个待评估的输入值是通过对代理函数应用某种标准(通常为预期提升)来选择的。贝叶斯方法不同于随机搜索或网格搜索,后两者都使用了过去的评估结果来选择接下来待评估的值。它们的思想是:通过根据过去表现良好的值选择下一个输入值来限制评价目标函数的高昂开销。

对于超参数优化来说,其目标函数为使用一组超参数的机器学习模型的验证误差。它的目标是找出在验证集上产生最小误差的超参数,并希望将这些结果泛化到测试集上去。对目标函数评估的开销是巨大的,因为它需要训练带有一组特定超参数的机器学习模型。理想情况下,我们希望找到这样一方法,它既能探索搜索空间,又能限制耗时的超参数评估。贝叶斯超参数调优使用一个不断更新的概率模型,通过从过去的结果中进行推理,使搜索过程「专注」于有可能达到最优的超参数。

Python 环境下有一些贝叶斯优化程序库,它们目标函数的代理算法有所区别。在本文中,我们将使用「Hyperopt」库,它使用树形 Parzen 评估器(TPE,https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf)作为搜索算法,其他的 Python 库还包含「Spearmint」(高斯过程代理)和「SMAC」(随即森林回归)。目前在这个领域有大量有趣的研究,所以如果你对某一个库不是很满意,你可以试试其他的选项!针对某个问题的通用结构(本文将使用的结构)可以在各个库间进行转换,其句法差异非常小。

到此这篇关于python超参数优化的具体方法的文章就介绍到这了,更多相关python超参数如何优化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python翻译软件实现代码(使用google api完成)

    python翻译软件实现代码(使用google api完成)

    这篇文章主要介绍了python结合google api完成的翻译软件实现代码,大家参考使用
    2013-11-11
  • 使用pandas实现csv/excel sheet互相转换的方法

    使用pandas实现csv/excel sheet互相转换的方法

    今天小编就为大家分享一篇使用pandas实现csv/excel sheet互相转换的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python实现多个视频合成一个视频的功能

    Python实现多个视频合成一个视频的功能

    这篇文章主要介绍了可以将多个视频拼接为一个视频的Python工具代码,文中的代码讲解详细,对我们学习Python有一定的帮助,快来跟随小编一起学习一下吧
    2021-12-12
  • matlab、python中矩阵的互相导入导出方式

    matlab、python中矩阵的互相导入导出方式

    这篇文章主要介绍了matlab、python中矩阵的互相导入导出方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python实现12种降维算法的示例代码

    Python实现12种降维算法的示例代码

    数据降维算法是机器学习算法中的大家族,与分类、回归、聚类等算法不同,它的目标是将向量投影到低维空间,以达到某种目的如可视化,或是做分类。本文将利用Python实现12种降维算法,需要的可以参考一下
    2022-04-04
  • 如何使用python批量修改文本文件编码格式

    如何使用python批量修改文本文件编码格式

    把文本文件的编码格式进行批量幻化,比如ascii, gb2312, utf8等,相互转化,字符集的大小来看,utf8>gb2312>ascii,因此最好把gb2312转为utf8,否则容易出现乱码,这篇文章主要介绍了如何使用python批量修改文本文件编码格式,需要的朋友可以参考下
    2023-03-03
  • 简洁的十分钟Python入门教程

    简洁的十分钟Python入门教程

    这篇文章主要介绍了简洁的十分钟Python入门教程,Python语言本身的简洁也使得网络上各种Python快门入门教程有着很高的人气,本文是国内此类其中的一篇,需要的朋友可以参考下
    2015-04-04
  • python开发微信服务号消息推送示例

    python开发微信服务号消息推送示例

    这篇文章主要为大家介绍了python开发微信服务号消息推送示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • python实现删除文件与目录的方法

    python实现删除文件与目录的方法

    这篇文章主要介绍了python实现删除文件与目录的方法,详细的分析了涉及Python文件操作的各种方法,需要的朋友可以参考下
    2014-11-11
  • python库JsonSchema验证JSON数据结构使用详解

    python库JsonSchema验证JSON数据结构使用详解

    这篇文章主要为大家介绍了python库JsonSchema验证JSON数据结构的使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05

最新评论