C语言求逆矩阵案例详解

 更新时间:2021年08月16日 09:09:38   作者:dogdng  
这篇文章主要介绍了C语言求逆矩阵案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。
适合编程的求逆矩阵的方法如下:

  1. 对可逆矩阵A进行QR分解:A=QR
  2. 求上三角矩阵R的逆矩阵
  3. 求出A的逆矩阵:A^(-1)=R^(-1)Q^(H)

以上三步都有具体的公式与之对应,适合编程实现。
C语言实现代码:

#include <stdio.h>
#include <math.h>

#define SIZE  8

double b[SIZE][SIZE]={0};//应该读作“贝尔塔”,注释中用B表示
double t[SIZE][SIZE]={0};//求和的那项
double Q[SIZE][SIZE]={0};//正交矩阵
double QH[SIZE][SIZE]={0};//正交矩阵的转置共轭
double R[SIZE][SIZE]={0};//
double invR[SIZE][SIZE]={0};//R的逆矩阵
double invA[SIZE][SIZE]={0};//A的逆矩阵,最终的结果
//={0};//
double matrixR1[SIZE][SIZE]={0};
double matrixR2[SIZE][SIZE]={0};

//double init[3][3]={3,14,9,6,43,3,6,22,15};
double init[8][8]={  
    0.0938  ,  0.5201 ,   0.4424  ,  0.0196  ,  0.3912  ,  0.9493 ,   0.9899  ,  0.8256,
    0.5254  ,  0.3477 ,   0.6878  ,  0.3309 ,   0.7691  ,  0.3276 ,   0.5144  ,  0.7900,
    0.5303  ,  0.1500 ,   0.3592  ,  0.4243 ,   0.3968  ,  0.6713 ,   0.8843  ,  0.3185,
    0.8611  ,  0.5861 ,   0.7363  ,  0.2703 ,   0.8085  ,  0.4386 ,   0.5880  ,  0.5341,
    0.4849  ,  0.2621 ,   0.3947  ,  0.1971 ,   0.7551  ,  0.8335 ,   0.1548  ,  0.0900,
    0.3935  ,  0.0445 ,   0.6834  ,  0.8217 ,   0.3774  ,  0.7689 ,   0.1999  ,  0.1117,
    0.6714  ,  0.7549 ,   0.7040  ,  0.4299 ,   0.2160  ,  0.1673 ,   0.4070  ,  0.1363,
    0.7413  ,  0.2428 ,   0.4423  ,  0.8878 ,   0.7904  ,  0.8620 ,   0.7487  ,  0.6787
};
/*/
函数名:int main()
输入:
输出:
功能:求矩阵的逆 pure C language
     首先对矩阵进行QR分解之后求上三角矩阵R的逆阵最后A-1=QH*R-1,得到A的逆阵。
作者:HLdongdong
*//////////////////////////////////////////////////////////////////////
int main()
{
    int i;//数组  行
    int j;//数组  列
    int k;//代表B的角标
    int l;//数组  列
    double dev;
    double numb;//计算的中间变量
    double numerator,denominator;
    double ratio;
    /////////////////求B/////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            b[j][i]=init[j][i];
        }
        for(k=0;k<i;++k)
        {
            if(i)
            {
                numerator=0.0;
                denominator=0.0;
                for(l=0;l<SIZE;++l)
                {
                    numerator+=init[l][i]*b[l][k];
                    denominator+=b[l][k]*b[l][k];
                }
                dev=numerator/denominator;
                t[k][i]=dev;
                for(j=0;j<SIZE;++j)
                {
                    b[j][i]-=t[k][i]*b[j][k];//t  init  =0  !!!
                }
            }
        }
    }
    ///////////////////对B单位化,得到正交矩阵Q矩阵////////////////////
    for(i=0;i<SIZE;++i)
    {
        numb=0.0;
        for(j=0;j<SIZE;++j)
        {
            numb+=(b[j][i]*b[j][i]);
        }
        dev=sqrt(numb);
        for(j=0;j<SIZE;++j)
        {
            Q[j][i]=b[j][i]/dev;
        }
        matrixR1[i][i]=dev;
    }
    /////////////////////求上三角R阵///////////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            if(j<i)
            {
                matrixR2[j][i]=t[j][i];
            }
            else if(j==i)   
            {
                matrixR2[j][i]=1;
            }
            else
            {
                matrixR2[j][i]=0;
            }
        }
    }
    mulMatrix(matrixR1,matrixR2,SIZE,SIZE,SIZE,R);
///////////////////////QR分解完毕//////////////////////////
    printf("QR分解:\n");
    printf("Q=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f    ",Q[i][j]);
        //  
        }
        printf("\n");
    }
    printf("R=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f    ",R[i][j]);
        //  
        }
        printf("\n");
    }
/////////////////////求R的逆阵//////////////////////////
    for(i=SIZE-1;i>=0;--i)
    {
        invR[i][i]=1/R[i][i];
        //R[i][i]=invR[i][i];
        if(i!=(SIZE-1))//向右
        {
            for(j=i+1;j<SIZE;++j)
            {
                invR[i][j]=invR[i][j]*invR[i][i];
                R[i][j]=R[i][j]*invR[i][i];
            }
        }
        if(i)//向上
        {
            for(j=i-1;j>=0;--j)
            {
                ratio=R[j][i];
                for(k=i;k<SIZE;++k)
                {
                    invR[j][k]-=ratio*invR[i][k];
                    R[j][k]-=ratio*R[i][k];
                }
            }   
        }
    }

///////////////////////////////////////////////////////

    printf("inv(R)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f  ",invR[i][j]);
        //  
        }
        printf("\n");
    }
////////////////////结果和MATLAB差一个负号,神马鬼????????/////////////////////
/////////////////////求QH//////////////////////////
    for(i=0;i<SIZE;++i)//实矩阵就是转置
    {
        for(j=0;j<SIZE;++j)
        {
            QH[i][j]=Q[j][i];
        }
    }
///////////////////////求A的逆阵invA/////////////////////////////

    mulMatrix(invR,QH,SIZE,SIZE,SIZE,invA);

    printf("inv(A)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f  ",invA[i][j]);
        //  
        }
        printf("\n");
    }

///////////////////////结果与MATLAB的结果在千分位后有出入,但是负号都是对的^v^///////////////////////////
    return 0;
}

另附上矩阵乘法的子函数

/*/
函数名:void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
输入:依次是 左矩阵,右矩阵,左矩阵高度,左矩阵宽度,右矩阵宽度,输出矩阵
输出:
功能:矩阵乘法
作者:HLdongdong
*//
void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
{
    int i,j,k;
    for(i=0;i<high1;++i)
    {
        for(j=0;j<weight2;j++)
        {
            for(k=0;k<weight;++k)
            {
                mulMatrixOut[i][j]+=matrix1[i][k]*matrix2[k][j];
            }
        }
    }
}

到此这篇关于C语言求逆矩阵案例详解的文章就介绍到这了,更多相关C语言求逆矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 基于VS+Opencv2.4.10微信跳一跳辅助工具

    基于VS+Opencv2.4.10微信跳一跳辅助工具

    这篇文章主要为大家详细介绍了基于VS+Opencv2.4.10微信跳一跳辅助工具,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • C语言计算余数的图文步骤

    C语言计算余数的图文步骤

    在本篇文章里小编给大家整理了一篇关于C语言计算余数的图文步骤内容,有需要的朋友们可以参考下。
    2020-02-02
  • C++小游戏教程之猜数游戏的实现

    C++小游戏教程之猜数游戏的实现

    这篇文章主要和大家详细介绍如何利用C++做一个简易的猜数游戏,分为用户猜数和系统猜数。文中的示例代码讲解详细 ,感兴趣的小伙伴可以尝试一下
    2022-11-11
  • C语言中getchar的用法以及实例解析

    C语言中getchar的用法以及实例解析

    getchar()是stdio.h中的库函数,它的作用是从stdin流中读入一个字符,下面这篇文章主要给大家介绍了关于C语言中getchar的用法以及实例的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-03-03
  • 如何用C语言、Python实现栈及典型应用

    如何用C语言、Python实现栈及典型应用

    本文先通过实例分别介绍了如何用C语言、Python实现栈,后又介绍栈的典型应用,对大家学习栈很有借鉴参考价值,下面一起来看看吧。
    2016-08-08
  • 深入了解C++中基于模板的类型擦除

    深入了解C++中基于模板的类型擦除

    在C\C++中主要有三种类型擦除的方式:基于void*的类型擦除、面向对象的类型擦除和基于模板的类型擦除,本文主要为大家详细介绍基于模板的类型擦除的相关知识,需要的可以了解下
    2023-12-12
  • 详解state状态模式及在C++设计模式编程中的使用实例

    详解state状态模式及在C++设计模式编程中的使用实例

    这篇文章主要介绍了state状态模式及在C++设计模式编程中的使用实例,在设计模式中策略用来处理算法变化,而状态则是透明地处理状态变化,需要的朋友可以参考下
    2016-03-03
  • C/C++实现投骰子游戏

    C/C++实现投骰子游戏

    这篇文章主要为大家详细介绍了C/C++实现投骰子游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-11-11
  • C语言递归之汉诺塔和青蛙跳台阶问题

    C语言递归之汉诺塔和青蛙跳台阶问题

    这篇文章主要介绍了C语言递归之汉诺塔问题和青蛙跳台阶问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • C++运算符重载限制介绍

    C++运算符重载限制介绍

    这篇文章主要介绍了C++运算符重载限制,关于运算符的重载并不是随心所欲的。C++给出了一些限制,从而保证了规范,以及程序运行的准确性,下面来了解C++运算符重载限制的详细内容吧,需要的朋友也可以参考一下
    2022-01-01

最新评论