OpenCV图像轮廓的绘制方法

 更新时间:2021年08月18日 16:06:46   作者:404_久夏青  
这篇文章主要为大家详细介绍了OpenCV图像轮廓的绘制方法,以及测试几何图形、花朵图形轮廓,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了检测几何图形轮廓和检测花朵图形轮廓,供大家参考,具体内容如下

OpenCV绘制图像轮廓

绘制轮廓的一般步骤:

1、读取图像

image = cv2.imread('image_path')

2、将原图转化为灰度图像

image_gray  = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

3、将灰度图像进行二值化阈值处理

# 这里将阈值设置为127为例,最大阈值为255
t, binary = cv.threshold(image_gray, 127, 255, cv.THRESH_BINARY)

4、检测二值化图像中边缘轮廓

# 这里以检测所有轮廓,不建立层次关系为例
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

5、在原图上绘制图像

# 这里将轮廓索引设置为-1,绘制出所有轮廓,颜色设置为红色,宽度为2为例
cv2.drawContours(image, contours, -1, (0, 0, 255), 2)

6、显示图像

cv2.imshow('image', image)

测试检测几何图形轮廓:

代码如下:

# -*- coding: utf-8 -*-
# @Time    : 2021/8/17
# @Author  : ZYh
"""
Introduction:
图像轮廓检测:
    OpenCV提供的findContours()方法可以通过计算图像梯度来判断出图像的边缘,然后将边缘的点封装成数组返回
    contours, hierarchy = cv2.findContours(image, mode, mothode)
    参数:
        image->被检测图像必须是8位单通道二值图像。如果原图是rgb图像,必须转为灰度图像,在进行二值化阈值处理
        mode->轮廓的检索模式
            参数值                     含义
            cv2.RETR_EXTERNAL       只检测外轮廓
            cv2.RETR_LIST           检测所有轮廓,但不建立层次关系
            cv2.RETR_CCOMP          检测所有轮廓,并建立两级层次关系
            cv2.RETR_TREE           检测所有轮廓,并建立树状结构的层次关系
        mothode->检测轮廓时使用的方法
            参数值                     含义
            cv2.CHAIN_NONE                储存轮廓上的所有点
            cv2.CHAIN_APPROX_SIMPLE       只保存水平、垂直或对角线轮廓的端点
            cv2.CHAIN_APPROX_TC89_L1      Ten_Chinl近似算法的一种
            cv2.CHAIN_APPROX_TC89_KCOS    Ten_Chinl近似算法的一种
    retval:
        contours->检测出的所有轮廓,list类型,每一个元素都是某个轮廓的像素坐标数组
        hierarchy->轮廓之间的层次关系
图像轮廓绘制:
    image = cv2.drawContours(image, contours, contourIdx, color, thickness, lineTypee, hierarchy,
        maxLevel, offse)
    参数:
        image->被绘制轮廓的原始图像,可以是多通道图像
        contours->findContours()方法得出的轮廓列表
        contourIdx->绘制轮廓的索引,如果为-1则绘制所有轮廓
        color:绘制颜色,BGR格式
        thickness->可选参数,画笔的粗细,如果为-1则绘制实心轮廓
        lineTypee->可选参数,绘制轮廓的线型
        hierarchy->可选参数,findContours()方法得出的层次关系
        maxLevel->可选参数,绘制轮廓的层次深度,最深绘制第maxLevel层
        offse->可选参数,偏移量,可以改变绘制结果的位置
"""
import cv2 as cv
# 读取加载图像
image1 = cv.imread('shape1.png')
image2 = cv.imread('shape1.png')
# 将图像由RGB格式转为灰度图像
gray1 = cv.cvtColor(image1, cv.COLOR_BGR2GRAY)
gray2 = cv.cvtColor(image2, cv.COLOR_BGR2GRAY)
# 将图像进行二值化阈值处理, 返回t是处理时采用的阈值,binary是阈值处理后的图像
t1, binary1 = cv.threshold(gray1, 127, 255, cv.THRESH_BINARY)
t2, binary2 = cv.threshold(gray2, 127, 255, cv.THRESH_BINARY)
# 检测图像中出现的所有轮廓,记录轮廓的每一个点
contours1, hierarchy1 = cv.findContours(binary1, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
# 显示原图
cv.imshow('image', image1)
# 绘制所有轮廓,宽度为3,颜色为红色
cv.drawContours(image1, contours1, -1, (0, 0, 255), 3)
cv.imshow('cv.RETR_LIST', image1)

# 检测图像中的外轮廓,记录轮廓的每一个点
contours2, hierarchy2 = cv.findContours(binary2, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
# 使用cv2.RETR_EXTERNAL做参数绘制外轮廓,宽度为3,颜色为蓝色
cv.drawContours(image2, contours2, -1, (255, 0, 0), 3)
cv.imshow('cv.RETR_EXTERNAL', image2)

cv.waitKey()
cv.destroyAllWindows()

运行结果:

测试检测花朵图形轮廓:

代码如下:

# -*- coding: utf-8 -*-
# @Time    : 2021/8/18
# @Author  : ZYh
"""
Introduction:
绘制花朵所有轮廓
"""
import  cv2 as cv

image_flower = cv.imread('flower.png')
# 显示原图
cv.imshow('flower1', image_flower)
# 对图像进行中值滤波处理,去除噪声
image_flower = cv.medianBlur(image_flower, 5)
cv.imshow('flower2', image_flower)
# 将图像从RGB转为单通道灰度图像
gray_flower = cv.cvtColor(image_flower, cv.COLOR_BGR2GRAY)
# 灰度图像进行二值化阈值处理
t, binary = cv.threshold(gray_flower, 127, 255, cv.THRESH_BINARY)
# 显示二值化图像
cv.imshow('binary', binary)
# 获取二值化图像中的轮廓以及轮廓层次
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
# 在原图中绘制轮廓
cv.drawContours(image_flower, contours, -1, (0, 255, 255), 2)
# 显示绘制轮廓后的图像
cv.imshow('cv.RETR_LIST', image_flower)

cv.waitKey()
cv.destroyAllWindows()

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • win32com操作word之Application&Documents接口学习

    win32com操作word之Application&Documents接口学习

    这篇文章主要为大家介绍了win32com操作word之Application&Documents接口学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-01-01
  • 利用pyecharts绘制地理散点图

    利用pyecharts绘制地理散点图

    这篇文章主要介绍了利用pyecharts绘制地理散点图,文章利用上海市7000+办公楼项目,包括项目名称,地理位置,每天的租金,建筑面积和项目所在的商圈,现在要让这些项目按经纬度落位到地图上去,需要的朋友可以参考一下
    2022-03-03
  • Python 数据结构之十大经典排序算法一文通关

    Python 数据结构之十大经典排序算法一文通关

    排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存
    2021-10-10
  • pytorch实现Tensor变量之间的转换

    pytorch实现Tensor变量之间的转换

    今天小编就为大家分享一篇pytorch实现Tensor变量之间的转换,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • conda虚拟环境下使用pyinstaller打包程序为exe文件全过程

    conda虚拟环境下使用pyinstaller打包程序为exe文件全过程

    pyinstaller是一个支持跨平台使用的第三方库,它可以将脚本执行所需的模块和库,自动分析、收集并生成一个文件夹或者可执行文件,这篇文章主要给大家介绍了关于conda虚拟环境下使用pyinstaller打包程序为exe文件的相关资料,需要的朋友可以参考下
    2023-12-12
  • pycharm sql语句警告的处理

    pycharm sql语句警告的处理

    这篇文章主要介绍了pycharm sql语句警告的处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • 利用scikitlearn画ROC曲线实例

    利用scikitlearn画ROC曲线实例

    这篇文章主要介绍了利用scikitlearn画ROC曲线实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python+Appium实现自动化清理微信僵尸好友的方法

    Python+Appium实现自动化清理微信僵尸好友的方法

    这篇文章主要介绍了Python+Appium实现自动化清理微信僵尸好友的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • Pycharm创建Django项目示例实践

    Pycharm创建Django项目示例实践

    本文主要介绍了Pycharm创建Django项目示例,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • Python浅析生成器generator的使用

    Python浅析生成器generator的使用

    生成器generator在循环过程中,按照某种算法推算数据,不必创建容器存储完整的结果,从而节省内存空间。数据量越大,优势越明显。以上作用也称之为延迟操作或惰性操作,通俗的讲就是在需要的时候才计算结果,而不是一次构建出所有结果
    2022-07-07

最新评论