爬虫Python验证码识别入门

 更新时间:2021年08月27日 17:01:00   作者:李国宝  
这篇文章主要介绍了爬虫Python验证码识别,属于入门级别的介绍,刚接触爬虫的朋友可以参考如下

爬虫Python验证码识别

前言:

二值化、普通降噪、8邻域降噪
tesseract、tesserocr、PIL
参考文献--代码地址:https://github.com/liguobao/python-verify-code-ocr

 1、批量下载验证码图片

import shutil
import requests
from loguru import logger

for i in range(100):
    url = 'http://xxxx/create/validate/image'
    response = requests.get(url, stream=True)
    with open(f'./imgs/{i}.png', 'wb') as out_file:
        response.raw.decode_content = True
        shutil.copyfileobj(response.raw, out_file)
        logger.info(f"download {i}.png successfully.")
    del response
 
 

2、识别代码看看效果

from PIL import Image
import tesserocr
img = Image.open("./imgs/98.png")
img.show()
img_l = img.convert("L")# 灰阶图
img_l.show()
verify_code1 = tesserocr.image_to_text(img)
verify_code2 = tesserocr.image_to_text(img_l)
print(f"verify_code1:{verify_code1}")
print(f"verify_code2:{verify_code2}")
 

毫无疑问,无论是原图还是灰阶图,一无所有。

 3、折腾降噪、去干扰

Python图片验证码降噪 - 8邻域降噪

from PIL import Image
# https://www.cnblogs.com/jhao/p/10345853.html Python图片验证码降噪 — 8邻域降噪

 
def noise_remove_pil(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值
    Returns:
    """

    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.size
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj.getpixel((_w_, _h_)) < 230:  # 这里因为是灰度图像,设置小于230为非白色
                    count += 1
        return count

    img = Image.open(image_name)
    # 灰度
    gray_img = img.convert('L')

    w, h = gray_img.size
    for _w in range(w):
        for _h in range(h):
            if _w == 0 or _h == 0:
                gray_img.putpixel((_w, _h), 255)
                continue
            # 计算邻域非白色的个数
            pixel = gray_img.getpixel((_w, _h))
            if pixel == 255:
                continue

            if calculate_noise_count(gray_img, _w, _h) < k:
                gray_img.putpixel((_w, _h), 255)
    return gray_img


if __name__ == '__main__':
    image = noise_remove_pil("./imgs/1.png", 4)
    image.show()
 

看下图效果:

这样差不多了,不过还可以提升

提升新思路:

这边的干扰线是从某个点发出来的红色线条,

其实我只需要把红色的像素点都干掉,这个线条也会被去掉。

from PIL import Image
import tesserocr
img = Image.open("./imgs/98.png")
img.show()

# 尝试去掉红像素点
w, h = img.size
for _w in range(w):
    for _h in range(h):
        o_pixel = img.getpixel((_w, _h))
        if o_pixel == (255, 0, 0):
            img.putpixel((_w, _h), (255, 255, 255))
img.show()

img_l = img.convert("L")
# img_l.show()
verify_code1 = tesserocr.image_to_text(img)
verify_code2 = tesserocr.image_to_text(img_l)
print(f"verify_code1:{verify_code1}")
print(f"verify_code2:{verify_code2}")

看起来OK,上面还有零星的蓝色像素掉,也可以用同样的方法一起去掉。

甚至OCR都直接出效果了
好了,完结撒花。
不过,后面发现,有些红色线段和蓝色点,是和验证码重合的。
这个时候,如果直接填成白色,就容易把字母切开,导致识别效果变差。
当前点是红色或者蓝色,判断周围点是不是超过两个像素点是黑色。
是,填充为黑色。
否,填充成白色。

最终完整代码:

from PIL import Image
import tesserocr
from loguru import logger


class VerfyCodeOCR():
    def __init__(self) -> None:
        pass

    def ocr(self, img):
        """ 验证码OCR

        Args:
            img (img): imgObject/imgPath

        Returns:
            [string]: 识别结果
        """
        img_obj = Image.open(img) if type(img) == str else img
        self._remove_pil(img_obj)
        verify_code = tesserocr.image_to_text(img_obj)
        return verify_code.replace("\n", "").strip()

    def _get_p_black_count(self, img: Image, _w: int, _h: int):
        """ 获取当前位置周围像素点中黑色元素的个数

        Args:
            img (img): 图像信息
            _w (int): w坐标
            _h (int): h坐标

        Returns:
            int: 个数
        """
        w, h = img.size
        p_round_items = []
        # 超过了横纵坐标
        if _w == 0 or _w == w-1 or 0 == _h or _h == h-1:
            return 0
        p_round_items = [img.getpixel(
            (_w, _h-1)), img.getpixel((_w, _h+1)), img.getpixel((_w-1, _h)), img.getpixel((_w+1, _h))]
        p_black_count = 0
        for p_item in p_round_items:
            if p_item == (0, 0, 0):
                p_black_count = p_black_count+1
        return p_black_count

    def _remove_pil(self, img: Image):
        """清理干扰识别的线条和噪点

        Args:
            img (img): 图像对象

        Returns:
            [img]: 被清理过的图像对象
        """
        w, h = img.size
        for _w in range(w):
            for _h in range(h):
                o_pixel = img.getpixel((_w, _h))
                # 当前像素点是红色(线段) 或者 绿色(噪点)
                if o_pixel == (255, 0, 0) or o_pixel == (0, 0, 255):
                    # 周围黑色数量大于2,则把当前像素点填成黑色;否则用白色覆盖
                    p_black_count = self._get_p_black_count(img, _w, _h)
                    if p_black_count >= 2:
                        img.putpixel((_w, _h), (0, 0, 0))
                    else:
                        img.putpixel((_w, _h), (255, 255, 255))

        logger.info(f"_remove_pil finish.")
        # img.show()
        return img


if __name__ == '__main__':
    verfyCodeOCR = VerfyCodeOCR()
    img_path = "./imgs/51.png"
    img= Image.open(img_path)
    img.show()
    ocr_result = verfyCodeOCR.ocr(img)
    img.show()
    logger.info(ocr_result)


到此这篇关于爬虫Python验证码识别入门的文章就介绍到这了,更多相关Python验证码识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python对比两个字典dict的差异详解

    python对比两个字典dict的差异详解

    这篇文章主要为大家详细介绍了python 如何对比两个字典dict的不同差异,文中的示例代码简洁易懂,具有一定的学习价值,感兴趣的可以了解一下
    2023-05-05
  • Python中的字典到底是有序的吗

    Python中的字典到底是有序的吗

    很多人会问Python中的字典到底是有序的吗,本文就详细的来介绍一下,感兴趣的可以了解一下
    2021-09-09
  • tensorboard显示空白的解决

    tensorboard显示空白的解决

    今天小编就为大家分享一篇tensorboard显示空白的解决,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Python时间模块datetime、time、calendar的使用方法

    Python时间模块datetime、time、calendar的使用方法

    这篇文章主要介绍了Python时间模块的使用方法,主要包括三大模块datetime、time、calendar,感兴趣的小伙伴们可以参考一下
    2016-01-01
  • Python 常用string函数详解

    Python 常用string函数详解

    下面小编就为大家带来一篇Python 常用string函数详解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-05-05
  • python生成器和yield关键字(完整代码)

    python生成器和yield关键字(完整代码)

    这篇文章主要介绍了python生成器和yield关键字,文章主要附上完整的代码及些许的解释说明,需要的小伙伴可以参考一下
    2022-01-01
  • python简单实现整数反转的画解算法

    python简单实现整数反转的画解算法

    这篇文章主要介绍了python简单实现整数反转采用了一个有趣的画解算法,通过示例的题目描述来对问题分析进行方案的解决,有需要的朋友可以参考下
    2021-08-08
  • 四步教你学会打包一个新的Python模块

    四步教你学会打包一个新的Python模块

    当你安装应用程序时,通常是安装一个软件包,其中包含应用程序的可执行代码和重要文件。在 Linux上,软件一般被打包成RPM或DEB等格式,然而几乎每天都有新的Python模块发布,因此你很容易遇到一个尚未打包的Python模块。本文教你四步打包一个新的Python模块
    2022-09-09
  • PyTorch张量拼接、切分、索引的实现

    PyTorch张量拼接、切分、索引的实现

    在学习深度学习的过程中,遇到的第一个概念就是张量,张量在pytorch中的计算十分重要,本文主要介绍了PyTorch张量拼接、切分、索引的实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • OpenCV半小时掌握基本操作之图像处理

    OpenCV半小时掌握基本操作之图像处理

    这篇文章主要介绍了OpenCV基本操作之图像处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09

最新评论