Python图片验证码降噪和8邻域降噪

 更新时间:2021年08月27日 17:38:56   作者:j-hao104  
这篇文章主要介绍了Python图片验证码降噪和8邻域降噪的相关内容,需要的小伙伴可以参考下面文章

Python图片验证码降噪 和8邻域降噪

一、简介

图片验证码识别的可以分为几个步骤,一般用 Pillow 库或 OpenCV 来实现:

1.灰度处理&二值化
2.降噪
3.字符分割
4.标准化
5.识别

所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只留下需要识别的字符,让图片变成2进制点阵,方便代入模型训练。

二、8邻域降噪

8邻域降噪 的前提是将图片灰度化,即将彩色图像转化为灰度图像。以RGN色彩空间为例,彩色图像中每个像素的颜色由R 、G、B三个分量决定,每个分量由0到255种取值,这个一个像素点可以有一千多万种颜色变化。而灰度则是将三个分量转化成一个,使每个像素点只有0-255种取值,这样可以使后续的图像计算量变得少一些。

以上面的灰度图片为例,图片越接近白色的点像素越接近255,越接近黑色的点像素越接近0,而且验证码字符肯定是非白色的。对于其中噪点大部分都是孤立的小点的,而且字符都是串联在一起的。8邻域降噪 的原理就是依次遍历图中所有非白色的点,计算其周围8个点中属于非白色点的个数,如果数量小于一个固定值,那么这个点就是噪点。对于不同类型的验证码这个阈值是不同的,所以可以在程序中配置,不断尝试找到最佳的阈值。

经过测试8邻域降噪 对于小的噪点的去除是很有效的,而且计算量不大,下图是阈值设置为4去噪后的结果:

三、Pillow实现

下面是使用 Pillow 模块的实现代码:

from PIL import Image


def noise_remove_pil(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值

    Returns:

    """

    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.size
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj.getpixel((_w_, _h_)) < 230:  # 这里因为是灰度图像,设置小于230为非白色
                    count += 1
        return count

    img = Image.open(image_name)
    # 灰度
    gray_img = img.convert('L')

    w, h = gray_img.size
    for _w in range(w):
        for _h in range(h):
            if _w == 0 or _h == 0:
                gray_img.putpixel((_w, _h), 255)
                continue
            # 计算邻域非白色的个数
            pixel = gray_img.getpixel((_w, _h))
            if pixel == 255:
                continue

            if calculate_noise_count(gray_img, _w, _h) < k:
                gray_img.putpixel((_w, _h), 255)
    return gray_img


if __name__ == '__main__':
    image = noise_remove_pil("test.jpg", 4)
    image.show()

四、OpenCV实现

使用OpenCV可以提高计算效率:

import cv2


def noise_remove_cv2(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值

    Returns:

    """

    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.shape
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj[_w_, _h_] < 230:  # 二值化的图片设置为255
                    count += 1
        return count

    img = cv2.imread(image_name, 1)
    # 灰度
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    w, h = gray_img.shape
    for _w in range(w):
        for _h in range(h):
            if _w == 0 or _h == 0:
                gray_img[_w, _h] = 255
                continue
            # 计算邻域pixel值小于255的个数
            pixel = gray_img[_w, _h]
            if pixel == 255:
                continue

            if calculate_noise_count(gray_img, _w, _h) < k:
                gray_img[_w, _h] = 255

    return gray_img


if __name__ == '__main__':
    image = noise_remove_cv2("test.jpg", 4)
    cv2.imshow('img', image)
    cv2.waitKey(10000)

到此这篇关于Python图片验证码降噪和8邻域降噪的文章就介绍到这了,更多相关Python验证码降噪和8邻域降噪内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python可变参数*args和**kwargs

    Python可变参数*args和**kwargs

    本文我们将通过示例了解 Python函数的可变参数*args和 **kwargs的用法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • Windows 8.1 64bit下搭建 Scrapy 0.22 环境

    Windows 8.1 64bit下搭建 Scrapy 0.22 环境

    这篇文章主要介绍了Windows 8.1 64bit下搭建 Scrapy 0.22 环境,需要的朋友可以参考下
    2018-11-11
  • PyQt5显示GIF图片的方法

    PyQt5显示GIF图片的方法

    今天小编就为大家分享一篇PyQt5显示GIF图片的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • pandas 给dataframe添加列名的两种方法

    pandas 给dataframe添加列名的两种方法

    DataFrame的单元格可以存放数值、字符串等,本文主要介绍了pandas 给dataframe添加列名的两种方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • python测试框架unittest和pytest区别

    python测试框架unittest和pytest区别

    这篇文章主要介绍了python测试框架unittest和pytest区别,帮助大家更好的理解和学习使用python进行自动化测试,感兴趣的朋友可以了解下
    2021-04-04
  • Python Beautiful Soup模块使用教程详解

    Python Beautiful Soup模块使用教程详解

    Beautiful Soup 简称 BS4(其中 4 表示版本号)是一个 Python 中常用的页面解析库,它可以从 HTML 或 XML 文档中快速地提取指定的数据,这篇文章主要介绍了Python Beautiful Soup模块的使用
    2023-02-02
  • django model去掉unique_together报错的解决方案

    django model去掉unique_together报错的解决方案

    本文给大家分享的是在使用django model去掉unique_together时报错的解决思路和具体步骤,提供给大家参考下,希望对大家学习使用django能够有所帮助
    2016-10-10
  • python实现批量改文件名称的方法

    python实现批量改文件名称的方法

    这篇文章主要介绍了python实现批量改文件名称的方法,涉及Python中os模块rename方法的相关使用技巧,需要的朋友可以参考下
    2015-05-05
  • python 如何用terminal输入参数

    python 如何用terminal输入参数

    这篇文章主要介绍了python 如何用terminal输入参数的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • 使用Python创建快捷方式管理应用

    使用Python创建快捷方式管理应用

    在Windows系统中,快速访问常用程序通常通过“开始菜单”中的“应用热门”功能实现,在这篇博客中,我将向你展示如何使用Python和wxPython创建一个GUI应用,帮助用户轻松将桌面上的快捷方式添加到Windows“开始菜单”的“应用热门”中,需要的朋友可以参考下
    2024-08-08

最新评论